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edge applications, e.g., image processing, speech recognition, and
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clone analysis has not been investigated for DL software. Since DL
software adopts the data-driven development paradigm, it is still 1 INTRODUCTION
not clear whether and to what extent the clone analysis techniques

of traditional software could be adapted to DL software. Deep learning (DL) has been widely applied to many cutting-
In this paper, we initiate the first step on the clone analysis of DL edge applications across domains, e.g., autonomous driving, image
software at three different levels, i.e., source code level, model struc- recognition, speech recognition, machine translation, etc. We are
tural level, and input/output (I/O)-semantic level, which would be witnessing a trend that more and more DL software is made open-
a key in DL software management, maintenance and evolution. We sourced, publicly available, and organized in model repositories
intend to investigate the similarity between these DL models from and stores (MoDEL Zoo [1], MopELDEPOT [2]). In some cases, the
clone analysis perspective. Several tools and metrics are selected training program source code, especially the code fragments rele-
to conduct clone analysis of DL software at three different levels. vant to deep neural network (DNN) structure implementation, is
Our study on two popular datasets (i.e., MNIST and CIFAR-10) and copy-pasted and modified for similar purposes. A challenge that
eight DL models of five architectural families (i.e., LeNet, ResNet, naturally arises is to analyze the relation of different DL software
DenseNet, AlexNet, and VGG) shows that: 1). the three levels of for better management, searching, recommendation, etc.
similarity analysis are generally adequate to find clones between In traditional software, software clone analysis [21, 53] is among
DL models ranging from structural to semantic; 2). different mea- one of the most important techniques in software management,
sures for clone analysis used at each level yield similar results; 3) evolution, and maintenance. It analyzes the similarity extent of soft-
clone analysis of one single level may not render a complete pic- ware artifacts, on which activities in software life-cycle (e.g., code
ture of the similarity of DL models. Our findings open up several recommendation, refactoring, code smell analysis, fault localization)
research opportunities worth further exploration towards better could be better performed. Clone analysis of traditional software
understanding and more effective clone analysis of DL software. has been extensively studied at different levels: from textual based

to semantic based [11]. However, for DL software developed by the
new data-driven programming paradigm, little progress of clone anal-
ysis has been made so far, and it is not clear what would be a suitable
way to perform clone analysis for DL software either.
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Towards approaching answers to these questions, this paper
performs an empirical study of clone analysis for the commonly-
used DL models, including LeNet, ResNet, DenseNet, VGG, and
AlexNet (see Fig. 1). In particular, to investigate the RP1, we con-
duct the clone analysis at three different levels, including the source
code level at the bottom, the DNN structure level at the middle, and
the input/output semantics level at the top. For RP2, we adopt textual
similarity at the static source code level, the static weight distance-
based similarity analysis at the DNN structure level, and the DL
runtime similarity analysis based on the pairs of input-output (I/O) re-
lations at the semantic level. Intuitively, when two DL models share
the same structure under the white-box context, the distance of
weights can be directly calculated by cosine similarity or Euclidean
distance. In the case of black-box or the models with different struc-
tures, we perform model distillation [25] on the two models to
extract their decision logic into the same DNN structure, based
on which the weight distance-based method is used for similarity
estimation. Finally, to investigate the RP3, we check to what extent
traditional textual-based similarity analysis [21] could be useful
for DNN structure similarity estimation, and what is the relevance
between the DNN structure and the DL runtime I/O semantics.

Our empirical study reveals that, for RP1, the three-level analysis
from bottom to top of the DL model is generally adequate to repre-
sent a DL model — two DL models can be considered similar, if they
are similar at least at one level. For RP2, we find that at each level,
various similarity measures (or clone detectors) of the same cate-
gory do not affect the analysis results — e.g., PYCODE_SIMILAR [3]
and MOSS [5] yield similar results for textual clone analysis at the
source code level, and cosine similarity or Euclidean distance also
yield similar results for weight distance-based similarity at DNN
structure level. For RP3, results show that clone analysis of one
single level may not reach the complete picture of the similarity
between two DL models — code textual or DNN architectural sim-
ilarity between two DL models cannot determine their semantic
similarity (i.e., the same functionality), and vice versa.

To summarize, this paper makes the following contributions:

e We initiate the first step to study the usefulness of the exist-
ing clone analysis for DL software. In particular, MOSS and Py-
CODE_SIMILAR are used to perform textual level clone analysis.
We investigate the structure level and I/O level clone analysis on
DL models by comparing weight distance-based similarity (e.g.,
cosine similarity and Euclidean distance), model distillation and
Jensen-Shannon divergence (JSD).

We find that textual clone analysis is not effective to capture the
structure similarity of DL models. The weight difference is useful
when the models have the same structure. I/O based methods
can represent the similarity but it highly depends on the selected
inputs.

Based on the results, we discuss and pinpoint some promising di-
rections towards the more effective clone analysis of DL software.
More detailed results are publicly available at our website [4].

2 BACKGROUND AND MOTIVATION
2.1 Clone Detection for Traditional Software

In general, code clone refers to identical or similar pieces of code
fragments recurring in software systems. In general, code clone can
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be categorized into four types [53], where the first three types (i.e.,
Type L, II, and III) are textual and the last Type (i.e., IV) is functional
(i.e., semantic in this paper).

Type I Clone: In Type I clone, two code segments are identical
to each other. However, there might be some variations in white
space, comments, and layouts.

Type II Clone: Syntactically equivalent fragments with some varia-
tions in identifiers, literals, types, whitespace, layout and comments.
Type III Clone: In Type III clone, the copied code segment is
further modified with inserted, deleted, or updated statements.
Type IV Clone: In Type IV clone, the code fragments are seman-
tically equivalent for performing the same computation, but are
syntactically different.

In traditional software, code cloning usually occurs due to code
reuse or plagiarism. Only in a few cases, it happens because of
the coincidence of having the same/identical implementation. In
general, textual similarity analysis (e.g., n-gram based [5] or token-
based [33]) is mostly applied for detecting Type I and II clones.
Structural similarity analysis (e.g., PDG-based [21] or 3D-CFG based
[13]) is mainly used for detecting Type III, and some part of Type IV
clones (e.g., reorder clone [53]). Last, I/O semantics analysis [30] is
for Type IV clone. As an active research area in recent decades, the
detection techniques on each type of clone have been extensively
studied for traditional software [11].

2.2 Deep Neural Networks

However, it is not obvious how existing clone analysis techniques
can be used for DL software (i.e., training program and model).
Deep neural network (DNN) is an artificial neural network with
multiple layers between the input and output layers [55], which
approximates the correct mathematical relationship between the
input to the output. DNN often has multiple layers of computing
units (i.e., neurons): a layer of input neurons (i.e., input layer),
followed by one or more layers of hidden units, and a layer of output
neurons (i.e., output layer). These layers are densely or sparsely
connected to process and propagate the information throughout
the whole DNN to make the decision.

While the decision logic of traditional software is directly en-
coded in the software code, the DL training program only defines
the DNN structure and runtime learning behavior. The final decision
logic of DL model is automatically learned on the training dataset,
and is encoded as a DNN in the format of a network structure and
connection strength (weights) between neurons and layers.

In this paper, we intend to investigate whether similarity at one
particular level can indicate the similarity at other levels (i.e., source
code, weight distance level of the output layers, and trained model
level with stable accuracy.) For example, we study if two DL models
have similar code (source code level), how about their structural
level or I/O level similarity?

2.3

Fig. 1 summarizes our clone analysis on DL software at different
levels. Like traditional software, clone analysis of DL software can
be conducted on the source code level, the structure level and the
runtime execution level. On the source code perspective, textual
clone (Type L, II, IIT) analysis could be performed on the training
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Figure 1: Motivating example of deep learning software clone at different levels.

program code, which defines the DNN structure and runtime train-
ing behaviors. For example, it is interesting to investigate how
VGG-16 in PyTorch and ResNet-18 in PyTorch are textually similar,
as they follow some similar API invocations (e.g., ReLU, Conv2D,
etc.). Similarly, we also intend to investigate how the same DNN
of different implementations (LeNet-5 in Keras or in PyTorch) are
textually similar.

On the structure level, we obtain a DL model when training
completes. If two DL models share the same structure, it is possible
to directly compare the weight distance for the similarity estimation
of model runtime behavior. However, it becomes quite challenging if
models under analysis adopt different structures or the target model
is a black-box. Hence, at this level, we calculate the weight distance-
based similarity regardless of their architectural differences.

At the I/O semantics level, regardless of model transparency
and structure, we analyze the I/O relations of two models on a
dataset. In particular, after feeding the same dataset as input to
different models, their corresponding output relation could reflect
the similarity. However, as various inputs of a DL model may yield
different results, we may need to use several training datasets to
measure their I/O semantic similarity.

This paper performs an exploratory study and quantitative anal-
ysis on how these DL models are similar based on the existing clone
analysis techniques at three different levels.

3 STUDY OVERVIEW
3.1 Overview of the Study Design

Fig. 2 sketches the overview of our study. In traditional software,
clone analysis has been extensively studied based on static analysis
and dynamic analysis [11]. In particular, the textual analysis is
used to compare the similarity between the source code. Structural
analysis is used to compare the similarity between the structure
of the source code such as abstract syntax tree (AST), control flow
graph (CFG), etc. Dynamic analysis is used to measure the similarity
by comparing the input and output values.
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Similar to traditional software, the clone analysis of DL software
could also be performed at different levels during development
phases, i.e., training code, deep neural networks and dynamic pre-
diction. Inspired by the clone analysis techniques on the traditional
software, in this paper, we perform an empirical study on how
effective the existing clone analysis techniques are on DL software.
In particular, we adopt the clone analysis techniques on the train-
ing program (textual analysis), DNN (structure-level analysis) and
dynamic prediction of multiple models (data-driven I/O semantic
analysis). By applying these techniques on DL software, we aim to
answer the research questions (RQs), which facilitate better under-
standing on differences and challenges of clone analysis between
traditional software and DL software.

In the paper, we aim to investigate the following research ques-
tions (RQs):

RQ1. How effective is the textual similarity analysis on the source
code of training programs in evaluating the similarity of the
structures of DL models?

Given DL models with different structures, how do the distil-
lation techniques help on similarity analysis for estimating
the similarity of DL run-time semantics, and how effective
is the weight distance-based similarity especially when DL
models have the same structure?

Given different inputs, how does I/O-semantics similarity
analysis perform in capturing the functional similarity of DL
models?

The Intention of RQ Design. RQ1-RQ3 are designed to cover the
scope of our study for RP1 (on what representations or levels for
clone analysis). Specifically, RQ1 is at the source code level, RQ2 is
at the DNN structure level, and RQ3 is at the I/O semantics level. For
RP3 (the similarity at one level relevance to those of other levels),
RQ1 is to check whether the traditional textual analysis technique
works for textual clones and indicates higher-level similarity (i.e.,
structure level); RQ2 studies whether the DNN structural-based
analysis is helpful for the similarity estimation of runtime semantics,
if the model structures are identical (or different) in RQ2; RQ3

RQ2.

RQ3.



Traditional Software
(Extensively
Studied)

Deep Learning Software

Research Questions Research Outputs

N N E 5 . [ RQfSimiarty |
: [e=] : Analysis based : .
Textual Clone: . crp 5 PY i on Source Code | : | Benchmarking
Analysis 5 :
: Source Code Training :
: Program :
RQ2:Similarity | :
Structural (%6 Analysis with
Clone Analysis : Model Structure | & | Answers of RQs

AST, CFG, efc,.

RQ3:1/O-Semanti
¢ Similarity

Analysis

Research
Direction

1/0 based Clone : oy
Analysis
Dynamic
Execution

Dynamic Prediction

Figure 2: Overview of our study design of clone analysis for deep learning software at different levels.

intends to study whether the traditional black-box testing method
(i.e., based on I/O relations) can effectively detect functional clones
among DL models, and whether textual similarity at the source
code level is relevant to functional clones.

3.2 Datasets and Models

In this paper, we select two publicly available datasets (i.e., MNIST [40],
CIFAR-10 [38]) as the subject datasets for training and prediction,
both of which are widely studied in the machine learning and soft-
ware engineering community.

MNIST is a collection of single-channelled image data of size 28 x
281 for 10 hand-written digit recognition. MNIST contains 70, 000
data in total, consisting of 60, 000 training data and 10, 000 test data.
CIFAR-10 is a collection of images for general-purpose image
classification (e.g., airplane, automobile, bird, cat), including 60, 000
color images in total with 50, 000 training images and 10, 000 test
images, respectively. Each CIFAR-10 image is three-channel of size
32 % 32 % 3, which is about 4 times dimensionality of MNIST image.

Based on the datasets above, we follow the best deep learning
practice and select different DNNs to perform the study, i.e., LeNet-
5 [39], AlexNet [37], ResNet-18 [23], ResNet-34 [23], DenseNet-
121 [28], DenseNet-161 [28] and VGG-16 [56]. To be representative,
these seven popular DL models from the previous study follow
different complexity and structures. For each dataset, we trained
7 DL models, where the accuracy of each model is summarized in
Table 1. Note that, the aims of this paper is to study the similarity of
different models (e.g., with different accuracy). Hence, high accuracy
is not a must for a model. Conversely, the more differences the
accuracy of models have, the lower the similarity could be.
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Table 1: Accuracy, developers, structures of subject models

Family | family-1 family-2 l family-3 l family-4 | family-5
Developer | Author-1 Author-2 Author-3
Model | LeNet-5 | ResNet-18 [ResNet-34 [ DenseNet-121 [ DenseNet-161 VGG-16 | AlexNet

MNIST | 96.8% | 98.93% | 99.12% |
CIFAR-10 | 64.60% | 92.80% | 93.20% |

995% |
9420% |

99.2%
94.50%

[ 98.28% | 98.71% |
| 87.7% | 81.70% |

3.3 Evaluation Metrics of Similarity

Ground truth of similarity. So far, there is no perfect ground
truth for representing the similarity between two DNNs. In this
paper, we use two metrics from the DL best practice to represent the
similarity. We conduct clone analysis based on the assumption that
the two DL models are trained on the same training dataset, and it
could require future analysis in measuring two models’ similarity
when the training dataset is unknown.

(1) Accuracy. Accuracy is a simple and direct way to approximate
the performance of the model. If two models share similar high
accuracy on the same test data, they tend to be similar.
Output distribution similarity. A more fine-grained way is to
evaluate the similarity of the output distribution of two mod-
els [67]. In this paper, we use Jensen-Shannon divergence (JSD),
calculate the similarity of the softmax outputs (i.e., the probabil-
ity outputs), which is a symmetric version of Kullback-Leibler
divergence for distribution similarity measurement.

@)

Similarity measure at different levels. To address the RP2
(what metrics we should adopt for clone analysis), we calculate
the similarity in each level (i.e., source code, structure and I/O
semantics) by using the following metrics to measure the similarity
at each level:

(1) Source code similarity Unlike traditional software similarity
matrices which are symmetrical, the PYCODE_SIMILAR uses the
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cally, we adopt PYCODE_SIMILAR [3] or MOSS [5] for textual

similarity measuring.

Structural similarity Cosine similarity is a measure to com-

pute cos similarity between two given non-zero vectors a and

algorithm is: Similarity Score = . Specifi-

,_\
DN
-

b, their cosine similarity is cos(6) = WM' Besides, we also

N2 (i = y;)2. We
adopt cosine similarity and Euclidean distance at DNN structure
level.

I/0 similarity In statistics, a commonly used method to mea-
sure the similarity of two probability distributions is the Jensen-
Shannon divergence (JSD). It is also known as information
radius (IRad) or total divergence to the average, which is de-
fined as: JSD(P1|P;) = 1KL(Py|2322) + 1KL(Py| 2tE2). Py
and P, in the equation are probability distributions and KL
stands for Kullback-Leibler divergence, which is defined as:

n :
KL(B1IP2) = 3, Pi(xi)log (735
2

use Euclidean distance that is d(x,y) =

Py(x;)
of Kullback-Leibler divergence (KLD). Furthermore, the Jaccard
index is used to check the prediction distribution. Given two
sets A and B, their Jaccard index is J(A, B) = I':Bgl .
adopt JSD and Jaccard index at I/O semantics level.

). JSD is a symmetric variant

Hence, we

Notably, to better address RP2, at each level, we adopt two simi-
larity measures and check whether their results are consistent.

4 EMPIRICAL STUDY

In this section, we discuss the detailed evaluation results for answer-
ing our research questions. All the experiments were conducted
on a workstation with E5-8160 * 2, four GTX 2080Ti, and 384 GB
RAM, running on Ubuntu 16.04 LTS. All the models used in the
experiment were implemented using PyTorch except a TensorFlow
implementation of LeNet-5 was used (see Table 2). Due to the page
limit, for RQ2 and RQ3, we only show the summarized results
on CIFAR-10 dataset in the paper and put more complete results
(including results on MNIST) on our website [4].

4.1 RQ1: Results of Code Similarity Analysis

4.1.1 Experimental Setup. In general, there are several types of
techniques that could be applied for source code clone detection:
token-based [22, 33, 52, 58, 60], tree-based [7, 9, 20, 31, 41], graph-
based [16, 36, 44], metric-based [18, 49], n-gram based [5, 10, 24, 54]
and deep learning based [42, 59, 64]. In this paper, we adopt a tree-
based tool, namely PYCODE-SIMILAR [3], to conduct the fast textual
clone detection among DL models. Among plenty of existing clone
detection techniques, the rationale to adopt the tree-based approach
is that this algorithm is easy to understand and apply. Compared
with the token-based approach [22, 33, 52, 58, 60], the tree-based
approach has the advantage in terms of detection precision and
efficiency, as it conducts tree matching with the aid of AST structure
and information. In practice, we employ PYCODE-SIMILAR [3] and
MOSS [5], these two tools that support Python languages to analyze
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Figure 3: Code similarity score using PYCODE_SIMILAR. Note
that the row represents the signature code and the column
represents the target code for comparison. In the color indi-
cator, darker implies higher similarity.
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the code similarity among DL models!. Notice that MOSS is a n-
gram based tool, while PYCODE-SIMILAR is tree-based.

As we mainly focus on evaluating the DL models, we only take
into account the training source code of the DL models for a fair
comparison. The code regarding input preprocessing is not included
for clone analysis in this study. As mentioned in Table 1, we choose
7 models from 5 structural families as the subjects, on which we eval-
uate whether models of different structures are similar. In addition,
to evaluate the impacts of different implementations on even the
same model structures, we collected two versions of LeNet-5 using
different frameworks for analysis, i.e., PyTorch and TensorFlow.

4.1.2  Results. Fig. 3 shows the results of the code similarity be-
tween different models that are implemented on the same frame-
work, i.e., PyTorch. Code analysis using PYCODE-SIMILAR indicates
three interesting findings: 1) models from the same family exhibit
very high code similarity. For DenseNet and ResNet, the similarity
is more than 99%. For the LeNet family, the similarity decreases
but is still more than 80%. 2) models from different families seem
to be quite different, exhibiting significantly lower similarity, e.g.,
all results are less than 60%, except comparing VGG-16 and others.
The reason is that the VGG-16 is written by the same author of
the ResNet family and DenseNet family, their code style is quite
similar. 3) AlexNet seems to be least textually similar compared to
other models. The rationale is that the source code of AlexNet is
written by different developers. To sum up, results show that code
analysis on training programs could be effective in distinguishing
the structures of different models when they are developed using the
same framework.

We further study the effects of different developers and frame-
works for code similarity analysis. Table 2 shows two different
versions of LeNet-5 developed by the same developer using two
different frameworks. Unsurprisingly, the results show that their

!In fact, we also tried Nicap [15]. It supports Python language but encounters some
errors when analyzing the DL libraries (See details at our website [4])



Table 2: Code similarity between different implementation
of LeNet-5 using PyTorch and TensorFlow.

{ LeNet-5-PyTorch { LeNet-5-TensorFlow

100% 11.71%
5.29% 100%

LeNet-5-PyTorch
LeNet-5-Tensorflow

code similarity is quite low (11.71% or 5.29%) even if they have the
same structure but are with different implementations because of
using the APIs from different frameworks.

Hence, the results indicate that different developers and frame-
works may result in low code similarity for DL modes even for the
same DNN structure.

Besides PYCODE-SIMILAR, we also apply MOSS [5] for the above
models. The results are consistent with those in Fig. 3—only models
from the same family are with code similarity above 90%, and
models from different families exhibit even lower code similarity
(usually lower than 10%) due to the fact that MOSS adopts a more
strict rule in detecting code clones than PYCODE-SIMILAR. Interested
readers can find more detailed results in applying MOSS at our
website [4].

-

Answer to RQ1: Regardless of whether using pYycODE-
SIMILAR or MOSS, they yield consistent analysis results. Mod-
els from the same DL family (of the same DNN structure) using
the same framework have high code similarity (above 99% in
many cases). Models from different families or implemented
by different frameworks exhibit a similarity of less than 50%
in most cases.

4.2 RQ2: Results of Structural Similarity
Analysis

After the models are trained, we study the clone analysis on model
structures via the weights-based similar analysis. If the models have
the same structure, their functional difference is determined only
by the weights. Otherwise, for models with different structures, we
adopt knowledge distillation [26] to mutually convert them for ease
of weights-based analysis, in both directions from one model to the
other. Notably, as described in §3.3, after knowledge distillation,
we adopt the accuracy of the model to approximately represent the
semantics, i.e., if their accuracy is similar and high enough on the
same training dataset, the semantics should also be similar.

4.2.1 Effectiveness of Weights-based Distance Measure for Structural
Similarity. For each model in Table 1, we conduct the study on both
training accuracy differences and weight differences. During the
training process, we record 10 versions at each 10 epochs, i.e., the
model at epoch 0, 10, ..., 100. Note that, we got 10 different versions
for each model. The assumption is that the 10 versions may have
different semantics but their structures are the same. For each two
out of the 10 versions, we calculate the cosine similarity/Euclidean
distance between the weights as well as the accuracy distance. Then
the relationship between the cosine similarity/Euclidean distance
and the accuracy distance shows how these versions are similar in
semantics.
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Table 3: Comparison between weights difference (WD) and
accuracy difference (AD) on DenseNet-121.

0 20 40 60 80
WD AD WD AD WD AD WD AD WD AD
0 0 0 9.28 0.35 9.67 0.32 9.67 0.37 9.66  0.38
20 9.28 0.35 0 0 6.85 0.04 7.04 0.01 7 0.03
40 9.67 0.32 6.85 0.04 0 0 3.24 0.05 3.58  0.07
60 9.67 0.37 7.04 0.01 324  0.05 0 0 274 0.02
80 9.66 0.38 7 0.03 3.58 0.07 2.74 0.02 0 0

Table 3 shows the difference measurement results for DenseNet-
121. The first column shows the models generated at different epoch
settings compared with models generated on the settings of the
first and second row. Columns WD and AD refer to settings of the
weights difference (i.e., Euclidean distance between weights of mod-
els) and the accuracy difference, respectively. From the results, we
observe that there is a relationship between WD and AD, i.e., when
the weights difference is high, the function of models tends to be
different (i.e., high accuracy difference). For example, consider the
models at epoch 0 and 80, which have very different accuracy (0.38),
we could find that the weights difference (9.66) is also very high.
However, consider epoch 60 and 80, their accuracy is close (0.02)
and the weights difference also becomes similar (2.74). The results
indicate that when using weights to perform similarity analysis, the
accuracy of two DL models needs to be stable. In other words, for
two DL models that have the same structure, if they have the similar
accuracy on the same dataset, their weights difference should be small.

4.2.2  Model Distillation. When the structure of two DL models is
different (e.g., my and mg), the direct model comparison by weights
and layers becomes difficult.For DNN structural similarity compari-
son, we cannot simply apply those code-structure (PDG-based [21])
or model similarity (e.g., [14, 51]) analysis techniques. In this study,
we employ a state-of-the-art DNN conversion technique Knowl-
edge Distillation, which is a method of network approximation [26].
By introducing a soft-target associated with the teacher network
(complex but superior inferential performance) as part of the to-
tal loss, to induce student network (student network: streamlined,
low complexity) training to achieve knowledge transfer. By using
knowledge distillation, we get two converted models (m; distilled
from m; and mé from my) with the same structure from two given
DL models (m; and my), and then compare their similarity through
calculating the similarity based on the weights (parameters) of two
student models m] and m. We use the weights-based similarity
between two student models to represent the similarity of two
original DL models.

4.2.3 Experimental Setup. We select seven models, i.e., DenseNet-
121, DenseNet-161, ResNet-18, ResNet-34, LeNet-5, AlexNet and
VGG-16 and compare each two of them. For each two models that
have different structures, we distill them to models with the same
structure. One important assumption of weights similarity compari-
son is to assure that one model (e.g., m}) after knowledge distillation
is functionally comparable to the original model (e.g., m;) — we
try to achieve this by preserving the accuracy after knowledge
distillation. In Table 4, we show the results of pair-wise application
of knowledge distillation on the seven models. For example, in the
first row of Table 4, the original model ResNet-18 has the accuracy
of 0.928, which achieves an accuracy of 0.899 after converted into



Table 4: Accuracy of DL models before and after distillation.

Original Model ~ Accuracy Target Model  Accuracy
ResNet-34 0.899
LeNet-5 0.712
ResNet-18 0.928 DenseNet-121  0.917
DenseNet-161  0.918
VGG-16 0.934
AlexNet 0.853
ResNet-18 0.907
LeNet-5 0.715
ResNet-34 0.932 DenseNet-121  0.912
DenseNet-161  0.914
AlexNet 0.857
VGG-16 0.936
ResNet-18 0.896
ResNet-34 0.920
DenseNet-121  0.914
LeNet-5 0646 DenseNet-161  0.921
AlexNet 0.855
VGG-16 0.934
LeNet-5 0.723
ResNet-18 0.899
ResNet-34 0.906
DenseNet-121 0.942 DenseNet-161  0.923
AlexNet 0.851
VGG-16 0.934
LeNet-5 0.708
ResNet-18 0.902
ResNet-34 0.911
DenseNet-161  0.945 DenseNet-121  0.914
AlexNet 0.855
VGG-16 0.932
LeNet-5 0.722
ResNet-18 0.917
ResNet-34 0.920
AlexNet 0817 DenseNet-121  0.927
DenseNet-161  0.929
VGG-16 0.900
LeNet-5 0.712
ResNet-18 0.917
VGG-16 0.877 ResNet-34 0.922

DenseNet-121  0.930
DenseNet-161  0.930
AlexNet 0.855

the structure of ResNet-34. The that LeNet-5 seems to be difficult to
achieve as high accuracy as other models, mostly due to its simple
DNN structure and model capacity.

4.2.4 Results Analysis. In Fig. 4, we show the cosine similarity
between the weights of all the models that were converted into
the structure of ResNet-18. Due to the page limit, we put more
complete results in our website [4]. Interestingly, the results imply
three facts. 1) Their weights are neither too similar nor different—
except the similarity with the model itself (i.e., 1.0), any other two
models have a cosine similarity between 0.5 and 0.6. The results
could be explained by the accuracy difference in Table 4. Except
for LeNet-5, the original accuracy of other models is very close.
Hence, all of the weight similarity are also close. 2) The models

Figure 4: Cosine similarity of distilled models. In the color
indicator, darker implies more similar.
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Figure 5: Euclidean distance (normalized) of distilled mod-
els. In the color indicator, darker implies more similar.
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from the same family fail to exhibit higher similarity—the ResNet-
18 distilled from ResNet-34 has a cosine similarity of 0.55, while
the ResNet-18 distilled from DenseNet-121 also has that of 0.54. 3)
For LeNet-5, the original accuracy is 0.646 which is much lower
than other models, i.e., LeNet-5 should have different semantics
than other models. However, after distillation, the similarity results
show that the difference becomes similar to any other two models
(i.e., between 0.5 and 0.6).

In addition to cosine similarity, we also employ normalized Eu-
clidean distance for weight-based analysis. In Fig. 5, any two dis-
tilled models of the same structure have a normalized Euclidean
distance between 5 and 6, except that the distance is 0.0 when com-
pared with itself. Hence, using Euclidean distance (normalized) has
a similar trend as using cosine similarity in Fig. 4.



Figure 6: JSD between models using CIFAR-10 as input. In
the color indicator, darker implies more similar.
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Answer to RQ2: For the DL models, after being converted
into the DNN of the exact same structure via knowledge distil-
lation, these models show a moderate similarity (cosine simi-
larity 55%) pair-wisely. In other words, weight-based similarity
analysis (cosine similarity or Euclidean distance) struggles to
distinguish the functionality among these models, and all the
models seem to be identical, as the unique information of each
model may be lost during the knowledge distillation.

4.3 1/0 Semantic Similarity among DL Models

In this section, we first briefly introduce the basic idea of how to
detect functional clone based on I/O behaviors (or semantics) anal-
ysis. Then, we treat the trained DL models as traditional software
and measure their output similarity on the basis of the JSD (see
§3.3), given the same testing data as input.

4.3.1 1/O Semantics Similarity. In traditional software, when the
black-box testing is conducted for two executables, functional equiv-
alence is a particular case of semantic equivalence that concerns
the input/output behavior of a piece of code, regardless of the in-
termediate program states [30]. Given two program executables
p1 and pa, the functional similarity can be measured by their out-
put o1 and o for the input i. If 0; and oy are always identical for
any tried input i, p; and py are functionally equivalent. Otherwise,
their similarity can be measured by the probability that p; and py
yield the same output [12]. Hence, when it comes to the trained DL
models, a program is analogical to a DL model with the training
data, the input analogical to the testing data to predict, and the
output analogical to the output distribution of the DL model. If two
trained DL models are functionally equivalent (or similar), given the
same test data, the output decision boundaries should be equivalent
(or similar). Notably, in the scenario of RQ3, the training data is
considered as one part of the model itself — if the model is not
well trained, we cannot fairly compare the I/O semantics due to the
noise brought by the affected accuracy.

4.3.2  Experimental Setup. To obtain the I/O semantic similarity
between two DL models (say m; and my), we train these two models
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Figure 7: Jaccard similarity between models using CIFAR-10
as input. In the color indicator, darker implies more similar.
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Figure 8: JSD between models using random input. In the
color indicator, darker implies more similar.
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on the same dataset, and then use the randomly generated input
(or something they have never seen) to obtain the output distri-
bution (say 01 and 0z). After that, a metric is needed to measure
the similarity between 0; and 02. Since The KLD is not symmetric,
we adopt the JSD. In this paper, all seven models are trained with
the training dataset of CIFAR-10. To compare the I/O semantics,
the testing datasets of CIFAR-10, MNIST, and randomly generated
data (with the same size of CIFAR-10) are separately used as test
input, and the output (i.e., predicted label distribution) of the seven
trained models are pair-wisely compared based on JSD.

4.3.3 Results Analysis. In Fig.6, we train the seven models with the
CIFAR-10 training dataset and compare their output distributions
using CIFAR-10 also as the testing dataset. Results of Fig.6 show
that for the same or similar tasks, the six models (except LeNet-5)
have very small JSD (< 0.17) in all cases — JSD shows that these
six models (except LeNet-5) have very close I/O semantics, being
functionally similar. We further inspect this case and check the
prediction distribution via the Jaccard similarity in Fig.7. In Fig.6, we
can observe that LeNet-5 has a significantly large JSD (above 0.33)



with other models. Similarly, in Fig. 7, we also observe that LeNet-
5 has a significantly small Jaccard similarity with other models.
Hence, using CIFAR-10 as the testing dataset for the prediction
input, these models expect LeNet-5 to exhibit a high functional
similarity via I/O semantics analysis, and the analysis on JSD or
Jaccard similarity shows similar trend in Fig.6 and Fig. 7.

To confirm the results, more testing datasets should be fed as
the prediction input. Hence, we also conduct the experiments on
randomly generated data for 20 times and on MNIST. Surprisingly,
using different testing datasets can lead to different conclusions. In
Fig. 8, with randomly generated data as the testing input, we observe
two set of similar models: ResNet-18, ResNet-34 and DenseNet-
121 are functionally similar (using random input and yielding the
almost identical output distribution); besides, DenseNet-161, VGG-
16, AlexNet are functionally similar. Still, LeNet-5 is quite different
from other models. On MNIST as the testing input, we observe that
all the models have different output distribution—these models are
functionally different on predicting MNIST. Notably, the Jaccard
similarity analysis produces the same results as that of using JSD.

Answer to RQ3: For the trained models, we find that these
models (except LeNet-5) are functionally similar when the
testing dataset is close to the training dataset. However, when
using randomly generated dataset or MNIST as test input,
these tools do not exhibit high functionally similarity. The
results are consistent when using JSD or Jaccard similarity for
I/O semantics analysis.

5 THREATS TO VALIDITY AND DISCUSSION

5.1 Threats to Validity

The selection of the subject datasets and DNN models could be a
threat to validity. Our results may not be general for all models and
datasets. In this paper, we selected two popular datasets and the
widely-used seven DNN models to reduce the threat. The evaluation
metrics may also be a threat to the validity. To reduce the threats,
at each level, we adopt two metrics to calculate the similarity. In
addition, we use the best practice to select the metrics to calculate
the code textual similarity, structural similarity and I/O similarity.
Another possible threat is whether the model is properly trained.
As using different weights (e.g., epochs) for training may yield
different accuracy, the results may not be generalized. To mitigate
the problem, we select the models trained from 10 epochs with best
tuned weight so that the results are representative.

5.2 Discussion

Based on the findings of this empirical study, we discuss the follow-
ing open research problems (RPs) and our potential insights as the
first step.

5.2.1 RP1. On what representations or levels, should we conduct
clone analysis? In this paper, we choose the representations from
three levels from bottom to top, namely training code, DNN struc-
ture and I/O semantics. They can basically represent the behaviors
of DL models at static, structural and dynamic (runtime) levels. If
two models are from the same family developed with the same
frameworks, they usually have a high textual code similarity. If
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the structures of the two models are exactly identical (even the
same DNN depth), they usually have high weights-based similarity.
However, when the structures of these models are different, after
we convert them mutually via knowledge distillation, all models
seem to be moderately similar on the basis of weight similarity
analysis. Furthermore, via I/O semantic analysis, we find that all
models except LeNet-5 are functionally similar if using CIFAR-10
as the training and testing dataset. To sum up, the clone analysis
on the three levels is capable of telling the differences between DL
models to some extent. However, it still leaves two issues to ad-
dress: 1) How to calculate the structural differences in a more accurate
way in alternative ways without knowledge distillation. 2) How to
calculate the I/O semantics analysis when the proper training date
is unavailable.

5.2.2  RP2. On each representation or level, what metrics should we
adopt? In this study, at each level of clone analysis, we adopt two
tools or measures for evaluating the similarity between the two
models. Specifically, for code similarity analysis, we apply pycode-
similar and MOSS. These two tools are token- or AST-based clone
detectors, and they yield quite consistent analysis results. After
looking into the source code of these models, we confirm that
these two detectors’ results are valid, and even CFG- or PDG-based
tools (N1cAD) do not perform better. For the structural analysis, we
currently employ the weights (a.k.a., parameters) based similarity
analysis (cosine similarity or Euclidean distance), and these two
metrics produce similar results. However, these two metrics are not
incapable of distinguishing the models after knowledge distillation.
We hold the position that it is not the issue of the metrics, but the
problem of knowledge distillation, which makes all the distilled
models different from the original ones. Last, the two metrics for
I/O semantics (JSD or Jaccard index) yield similar results. However,
the results of the current I/O semantics analysis may vary with
different testing input. Besides, we now make use of CIFAR-10 as
the training dataset, and it is desired to use various training datasets
in the future.

5.2.3 RP3. How is the similarity at one level relevant to that at other
levels? In traditional software, textual or structural similarity usu-
ally indicates or highly correlates functional similarity — programs
of the similar implementations usually perform the same task, and
hence code recommendation can be facilitated by the clone analysis.
However, in DL software, we cannot reach the same conclusion. In
fact, the textual or structural similarity detected among DL models
fails to indicate their functional similarity—in general, the similarity
at one level fails to highly correlate to that of another level. Via
our preliminary study, we observe that DL software is essentially
data-driven program, and the training dataset shapes the function-
ality of the DL software. An more complete and accurate comparison
of two DL models should take into account the similarity and the
distribution of the training dataset. In addition, it is an interesting
research direction about how to combine the code, parameters and I/O
semantics together. .

5.24 What are research opportunities regarding clones in DL Mod-
els? Traditional software clones have many applications such as
code recommendation, refactoring, code smell analysis and fault
localization. However, whether we can do the similar tasks in DL



models with the clone detected? For example, could we detect the
adversarial attacks with clone analysis instead of the ineffective
transfer attack? How to use the similarity to interpret the deep
learning models? Can we re-use the clones in the models to im-
prove the maintainability?

6 RELATED WORK

Our study is related to two lines of studies, namely clone detection
and analysis, and deep learning testing and analysis.

6.1 Clone Detection and Analysis

We briefly introduce clone detection and analysis techniques from
the following three perspectives.

6.1.1  Textual Similarity Analysis. There are three techniques com-
monly used in textual similarity analysis, namely longest com-
mon subsequence (LCS) [8], token-based method, and n-gram tech-
nique. The representative tools based on LCS include CLONEDE-
TECTIVE [32] and N1CAD [15]. CCFINDER [33] and CP-MINER [43]
belongs to the token-based tool family. Besides, MOSS [5] relies
on the concept of n-gram. However, most of the abovementioned
detectors cannot be directly applied to Python program due to the
lack of support of syntax front. Hence, we adopt PYCODE_SIMILAR
and MOSS for textual analysis on Type-I and Type-II clone.

6.1.2  Structural Similarity Analysis. To address the issues of tex-
tual analysis due to no consideration of program structures, code
clone detectors or analyzers gradually employ different represen-
tations for comparing the code of programs [53]. Early in 1998,
CLoNEDR [6] is proposed to use Abstract Syntax Tree (AST) to
represent the code structure and locate clones, which has a time
complexity of O(n3). To lower the complexity of tree-comparison,
DECKARD [29] employs a characteristic vector to approximate an
AST. DEckARD and 3D-CFG [13] further utilize program depen-
dency graphs (PDGs) as well as control flow graphs (CFGs) to im-
prove the detection accuracy. There are also some tools (MODELCD
[51], SIMONE [14] and CoNQAT [17]) on model-based clone de-
tection, but they only work for MATLAB or Simulink models, not
designed for DL models. In this paper, we propose to measure the
structural similarity via the weight similarity analysis after knowl-
edge distillation.

6.1.3  Semantic Similarity Analysis. To realize the detection of cloned
code performing the same computation, MECC [34] presents a mem-
ory comparison-based clone detector, which is an I/O semantics
analysis based on white-box testing technique. Besides, Zhang et
al. [63] propose the concept of value dependence graph (VDG),
and then apply LCS to assess the similarity between core values
extracted from two implementations of one algorithm. Differently,
in DL models, neither the input nor the output is a single value or
data list. Hence, the distribution divergence used in this paper is
required for comparing I/O semantics between DL models.

Compared to the existing clone detection techniques which focus
on the clone analysis for traditional software, we initiate the first
step towards the code clone analysis for DL programs. Except the
source code level analysis, considering the difference between tradi-
tional software and DL software, we also investigate the structure
level and I/O level clone analysis on DL models.
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6.2 Deep Learning Testing and Analysis

Recent progress starts to be made on testing and analysis of DL
software [65, 66]. DeepXplore [50] proposed the first differential
testing frameworks to capture the differences of two DNNs. Ten-
sorFuzz [48] proposed the coverage-guided testing technique to
detect the disagreements of different DNNs. Intuitively, TensorFuzz
tends to generate new input that is far from the existing inputs. Dif-
fChaser [62] transforms the problem of detecting disagreements in
detecting samples that are near the decision boundary. The genetic
algorithm is further used to generate such samples by minimiz-
ing the output difference. In addition, DiffChaser could generate
targeted disagreements. The techniques above mainly focus on
generating disagreements but are difficult to quantify the similarity
directly. Instead, we perform the study on quantifying the similarity
of DL software at different levels.

In addition, some testing criteria are also proposed for measuring
the internal behaviors of DNNs. Followed by DeepXplolre that prop-
soed neuron coverage, DeepGauge [46] proposed a set of testing
criteria such as k-multisection neural coverage, neural boundary
coverage and etc. DeepCT [45] proposes a set of combinatorial
testing criteria for testing DNNs. The surprise adequacy test crite-
ria are proposed in [35]. DeepStellar [19] proposes a set of testing
criteria for recurrent neural networks. With these metrics, some
coverage-guided testing tools [57, 61] are developed to test deep
neural networks. DeepMutation [27, 47] utilizes the idea of muta-
tion testing to build testing frameworks for deep learning software.
We believe a possible research direction is to develop clone analysis
techniques based on the existing and further proposed new testing
criteria. Different from the above studies trying to propose effective
testing criteria for DNNs, our work mainly focuses on analyzing
the similarity and clones between DL models.

7 CONCLUSION

In this paper, we performed the first step in studying how the exist-
ing clone analysis techniques perform in the deep learning software.
The study shows that the textual clone analysis is not effective to
evaluate the structure similarity of models, especially when they
are written by different developers or on different frameworks. For
models with the same structure, the weights difference is useful
to show the similarity. For models that have different structures,
knowledge distillation is not useful to capture the differences. The
I/0 based technique can represent the similarity but the results are
very dependent on the selected inputs. We further discussed the
challenge and the potential research direction about clone analysis
in DL software. We believe similarity analysis is very important for
model analysis, selection and explanation. This study makes the
first step towards this direction on developing techniques to evalu-
ate the similarity of models based on clone analysis techniques.
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