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xFuzz: Machine Learning Guided Cross-Contract
Fuzzing

Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang, and Jianjun Zhao

Abstract—Smart contract transactions are increasingly interleaved by cross-contract calls. While many tools have been developed to
identify a common set of vulnerabilities, the cross-contract vulnerability is overlooked by existing tools. Cross-contract vulnerabilities are
exploitable bugs that manifest in the presence of more than two interacting contracts. Existing methods are however limited to analyze a
maximum of two contracts at the same time. Detecting cross-contract vulnerabilities is highly non-trivial. With multiple interacting
contracts, the search space is much larger than that of a single contract. To address this problem, we present XFUZZ, a machine learning
guided smart contract fuzzing framework. The machine learning models are trained with novel features (e.g., word vectors and
instructions) and are used to filter likely benign program paths. Comparing with existing static tools, machine learning model is proven to
be more robust, avoiding directly adopting manually-defined rules in specific tools. We compare XFUZZ with three state-of-the-art tools on
7,391 contracts. XFUZZ detects 18 exploitable cross-contract vulnerabilities, of which 15 vulnerabilities are exposed for the first time.
Furthermore, our approach is shown to be efficient in detecting non-cross-contract vulnerabilities as well—using less than 20% time as
that of other fuzzing tools, XFUZZ detects twice as many vulnerabilities.

Index Terms—Smart Contract, Fuzzing, Cross-contract Vulnerability, Machine Learning

✦

1 INTRODUCTION

E THEREUM has been on the forefront of most rankings
of block-chain platforms in recent years [1]. It enables

the execution of programs, called smart contracts, written in
Turing-complete languages such as Solidity. Smart contracts
are increasingly receiving more attention, e.g., with over 1
million transactions per day since 2018 [2].

At the same time, smart contracts related security attacks
are on the rise as well. According to [3], [4], [5], vulnerabilities
in smart contracts have already led to devastating financial
losses over the past few years. In 2016, the notorious
DAO attack resulted in the loss of 150 million dollars [6].
Additionally, as figured out by Zou et al. [7], over 75% of
developers agree that the smart contract software has a
much high security requirement than traditional software.
Considering the close connection between smart contract
and financial activities, the security of smart contract security
largely effects the stability of the society.

Many methods and tools have since been developed
to analyze smart contracts. Existing tools can roughly be
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categorized into two groups: static analyzers and dynamic ana-
lyzers. Static analyzers (e.g., [8], [9], [10], [11], [12], [13]) often
leverage static program analysis techniques (e.g., symbolic
execution and abstract interpretation) to identify suspicious
program traces. Due to the well-known limitations of static
analysis, there are often many false alarms. On the other
side, dynamic analyzers (including fuzzing engines such
as [14], [15], [16], [17], [18]) avoid false alarms by dynamically
executing the traces. Their limitation is that there can often
be a huge number of program traces to execute and thus
smart strategies must be developed to selectively test the
program traces in order to identify as many vulnerabilities
as possible. Besides, static and dynamic tools also have a
common drawback — the detection rules are usually built-in and
predefined by developers, sometimes the rules among different
tools could be contradictory (e.g., reentrancy detection rules
in SLITHER and OYENTE [19]).

While existing efforts have identified an impressive list of
vulnerabilities, one important category of vulnerabilities, i.e.,
cross-contract vulnerabilities, has been largely overlooked
so far. Cross-contract vulnerabilities are exploitable bugs
that manifest only in the presence of more than two inter-
acting contracts. For instance, the reentrancy vulnerability
shown in Figure 4 occurs only if three contracts interact
in a particular order. In our preliminary experiment, the
two well-known fuzzing engines for smart contracts, i.e.,
CONTRACTFUZZER [15] (version 1.0) and SFUZZ [14] (version
1.0), both missed this vulnerability due to they are limited to
analyze two contracts at the same time.

Given a large number of cross-contract transactions in
practice [20], there is an urgent need for developing sys-
tematic approaches to identify cross-contract vulnerabilities.
Detecting cross-contract vulnerabilities however is non-
trivial. With multiple contracts involved, the search space
is much larger than that of a single contract, i.e., we must
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consider all sequences and interleaving of function calls from
multiple contracts.

As fuzzing techniques practically run programs and
barely produce false positive reports [15], [21], adopting
fuzzing in cross-contract vulnerability detection is preferred.
However, due to the efficiency concerns, we need other
techniques to guide fuzzers to practically detect cross-
contract vulnerabilities. Previous works (e.g., [22], [23]) have
evidenced the advantages of applying machine learning
method for improving efficiency of vulnerability fuzzing in
C/C++ programs. Compared with static rule-based methods,
the ML model based method requires no prior domain
knowledge about known vulnerabilities, and can effectively
reduce the large search space for covering more vulnerable
functions. In smart contract, existing works (e.g., ILF [24])
focus on exploring the state space in the intra-contract scope.
They are unable to address the cross-contract vulnerabilities.
With a large search space of combinations of numerous
function calls, it is desired to guide the fuzzing process
via the aid of the machine learning models.

In this work, we propose XFUZZ, a machine learning (ML)
guided fuzzing engine designed for detecting cross-contract
vulnerabilities. Ideally, according to the Pareto principle
in testing [25] (i.e., roughly 80% of errors come from 20%
of the code), we want to rapidly identify the error-prone code
before applying the fuzzing technique. As reported by previous
works [26], [27], the existing analysis tools suffer from high
false positive rates (e.g., SLITHER [10] and SMARTCHECK [13]
have more than 70% of false positive rates). Therefore,
adopting only one static tool in our approach may produce
biased results. To alleviate this, we use three tools to vote the
reported vulnerabilities in contracts, and we further train a
ML model to learn common patterns from the voting results.
It is known that ML models can automatically learn patterns
from inputs with less bias [28]. Based on this, the overall bias
due to using a certain tool to identify potentially vulnerable
functions in contracts can be reduced.

Specifically, XFUZZ provides multiple ways of reducing
the enormous search space. First, XFUZZ is designed to
leverage an ML model for identifying the most probably
vulnerable functions. That is, an ML model is trained to
filter most of the benign functions whilst preserving most of
the vulnerable functions. During the training phase, the ML
models are trained based on a training dataset that contains
program codes that are labeled using three famous static anal-
ysis tools (i.e., the labels are their majority voting result). Fur-
thermore, the program code is vectorized into vectors based
on word2vec [29]. In addition, manually designed features,
such as can_send_eth, has_call and callee_external,
are supplied to improve training effectiveness as well. In the
guided fuzzing phase, the model is used to predict whether
a function is potentially vulnerable or not. In our evaluation
of ML models, the models allow us to filter 80.1% non-
vulnerable contracts. Second, to further reduce the effort
required to expose cross-contract vulnerabilities, the filtered
contracts and functions are further prioritized based on a
suspiciousness score, which is defined based on an efficient
measurement of the likelihood of covering the program
paths.

To validate the usefulness of XFUZZ, we performed
comprehensive experiments, comparing with a static cross-

contract detector CLAIRVOYANCE [19] and two state-of-
the-art dynamic analyzers, i.e., CONTRACTFUZZER [15]
and SFUZZ, on widely-used open-dataset ([30], [31]) and
additional 7,391 contracts. The results confirm the effective-
ness of XFUZZ in detecting cross-contract vulnerabilities, i.e.,
18 cross-contract vulnerabilities have been identified. 15 of
them are missed by all the tested state-of-the-art tools. We
also show that our search space reduction and prioritization
techniques achieve high precision and recall. Furthermore,
our techniques can be applied to improve the efficiency of
detecting intra-contract vulnerabilities, e.g., XFUZZ detects
twice as many vulnerabilities as that of SFUZZ and uses less
than 20% of time.

The contributions of this work are summarized as follows.
• To the best of our knowledge, we make the first attempts

to formulate and detect three common cross-contract vul-
nerabilities, i.e., reentrancy, delegatecall and tx-origin.

• We propose a novel ML based approach to significantly
reduce the search space for exploitable paths, achieving
well-trained ML models with a recall of 95% on a testing
dataset of 100K contracts. We also find that the trained
model can cover a majority of reports of other tools.

• We perform a large-scale evaluation and performed com-
parative studies with state-of-the-art tools. Leveraging
the ML models, XFUZZ outperforms the state-of-the-art
tools by at least 42.8% in terms of recall meanwhile
keeping a satisfactory precision of 96.1%.

• XFUZZ also finds 18 cross-contract vulnerabilities. All of
them are verified by security experts from our industry
partner. We have published the exploiting code to these
vulnerabilities on our anonymous website [32] for public
access.

2 MOTIVATION

In this section, we first introduce three common types of
cross-contract vulnerabilities. Then, we discuss the challenges
in detecting these vulnerabilities by state-of-the-art fuzzing
engines to motivate our work.

2.1 Problem Formulation and Definition

In general, smart contracts are compiled into opcodes [33]
so that they can run on EVM. We say that a smart contract
is vulnerable if there exists a program trace that allows an
attacker to gain certain benefit (typically financial) illegiti-
mately. Formally, a vulnerability occurs when there exist de-
pendencies from certain critical instructions (e.g., TXORIGIN
and DELEGATECALL) to a set of specific instructions (e.g., ADD,
SUB and SSTORE). Therefore, to formulate the problem, we
adopt definitions of vulnerabilities from [9], [34], based on
which we define (control and data) dependency and then
define the cross-contract vulnerabilities.

Definition 1 (Control Dependency). An opcode opj is said to
be control-dependent on opi if there exists an execution
from opi to opj such that opj post-dominates all opk in
the path from opi to opj (excluding opi) but does not post-
dominates opi. An opcode opj is said to post-dominate an
opcode opi if all traces starting from opi must go through
opj .
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1 function withdrawBalance() public {
2 uint amountToWithdraw = userBalances[msg.

sender];
3 msg.sender.call.value(amountToWithdraw)("");
4 userBalances[msg.sender] = 0;
5 }

Fig. 1: An example of reentrancy vulnerability.

1 contract Delegate {
2 address public owner;
3 function pwn() {
4 owner = msg.sender;
5 } }
6 contract Delegation {
7 address public owner;
8 Delegate delegate;
9 function() {

10 if(delegate.delegatecall(msg.data)) {
11 this;
12 } } }

Fig. 2: An example of delegatecall vulnerability.

1 function withdrawAll(address _recipient) public
{

2 require(tx.origin == owner);
3 _recipient.transfer(this.balance);
4 }

Fig. 3: An example of tx-origin vulnerability.

Definition 2 (Data Dependency). An opcode opj is said to be
data-dependent on opi if there exists a trace that executes
opi and subsequently opj such that W (opi)∩R(opj) ̸= ∅,
where R(opj) is a set of locations read by opj and W (opi)
is a set of locations written by opi.

An opcode opj is dependent on opi if opj is control or data
dependent to opi or opj is dependent to opk meanwhile opk is
dependent to opi.

In this work, we define three typical categories of cross-
contract vulnerabilities that we focus on, i.e., reentrancy,
delegatecall and tx-origin. Although our method can be
generalized to support more types of vulnerabilities, in
this paper, we focus on the above three vulnerabilities
since they are among the most dangerous ones with urgent
testing demands. Specifically, the reentrancy and delegatecall
vulnerabilities are highlighted as top risky vulnerabilities
in previous works [9], [10]. The tx-origin vulnerability is
broadly warned in previous research [35], [10].

We define C as a set of critical opcodes, which contains
CALL, CALLCODE, DELEGATECALL, i.e., the set of all opcode
associated with external calls. These opcodes associated with
external calls could be the causes of vulnerabilities (since
then the code is under the control of external attackers).
Definition 3 (Reentrancy Vulnerability). A trace suffers from

reentrancy vulnerability if it executes an opcode opc ∈ C
and subsequently executes an opcode ops in the same
function such that ops is SSTORE, and opc depends on
ops.

A smart contract suffers from reentrancy vulnerability if
and only if at least one of its traces suffers from reentrancy
vulnerability. This vulnerability results from the incorrect
use of external calls, which are exploited to construct a call-
chain. When an attacker A calls a user U to withdraw money,
the fallback function in contract A is invoked. Then, the

malicious fallback function calls back to U to recursively
steal money. In Figure 1, the attacker can construct an end-to-
end call-chain by calling withdrawBalance in the fallback
function of the attacker’s contract then steals money.
Definition 4 (Dangerous Delegatecall Vulnerability). A trace

suffers from dangerous delegatecall vulnerability if it
executes an opcode opc ∈ C that depends on an opcode
DELEGATECALL.

A smart contract suffers from delegatecall vulnerability if
and only if at least one of its traces suffers from delegatecall
vulnerability. This vulnerability is due to the abuse of dan-
gerous opcode DELEGATECALL. When a malicious attacker
B calls contract A by using delegatecall, contract A’s
function is executed in the context of attacker, and thus causes
damages. In Figure 2, malicious attacker B sends ethers
to contract Delegation to invoke the fallback function at
line 10. The fallback function calls contract Delegate and
executes the malicious call data msg.data. Since the call
data is executed in the context of Delegate, the attacker can
change the owner to an arbitrary user by executing pwn at
line 3.
Definition 5 (Tx-origin Misuse Vulnerability). A trace suffers

from tx-origin misuse vulnerability if it executes an
opcode opc ∈ C that depends on an opcode ORIGIN.

A smart contract suffers from tx-origin vulnerability
if and only if at least one of its traces suffers from tx-
origin vulnerability. This vulnerability is due to the mis-
use of tx.origin to verify access. An example of such
vulnerability is shown in Figure 3. When a user U calls
a malicious contract A, who intends to forward call to
contract B. Contract B relies on vulnerable identity check
(i.e., require(tx.origin == owner) at line 2 to filter
malicious access. Since tx.orign returns the address of U
(i.e., the address of owner), malicious contract A successfully
poses as U.
Definition 6 (Cross-contract Vulnerability). A group of

contracts suffer from cross-contract vulnerability if there
is a vulnerable trace (that suffers from reentrancy, dele-
gatecall, tx-origin) due to opcode from more than two
contracts.

A smart contract suffers from cross-contract vulnera-
bility if and only if at least one of its traces suffers from
cross-contract vulnerability. For example, a cross-contract
reentrancy vulnerability is shown in Figure 4. An attack
requires the participation of three contracts: malicious con-
tract Logging deployed at addr_m, logic contract Logic
deployed at addr_l and wallet contract Wallet deployed
at addr_w. First, the attack function log calls function
logging at Logic contract then sends ethers to the at-
tacker contract by calling function withdraw at contract
Wallet. Next, the wallet contract sends ethers to attacker
contract and calls function log. An end-to-end call chain
1⃝ → 2⃝ → 3⃝ → 4⃝ → 1⃝... is formed and the attacker can

recursively steal money without any limitations.

2.2 State-of-the-arts and Their Limitations

First, we perform an investigation on the capability in detect-
ing vulnerabilities by the state-of-the-art methods, including
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Fig. 4: An example of cross-contract reentrancy vulnerability which is missed by the state-of-art fuzzer, namely SFUZZ.
∗Note: The solid boxes represent functions and the dashed containers denote contracts. Specifically, function call is denoted by
solid line. The cross-contract calls are highlighted by red arrows. The blue arrow represents cross-contract call missed by sFuzz and
ContractFuzzer.

[10], [8], [9], [19], [14], [15]. In general, cross-contract testing
and analysis are not supported by most of these tools except
CLAIRVOYANCE. The reason is existing approaches merely
focus on one or two contracts, and thus, the sequences and
interleavings of function calls from multiple contracts are
often ignored. For example, the vulnerability in Figure 4 is
a false negative case of static analyzer SLITHER, OYENTE
and SECURIFY. Note that although this vulnerability is found
by CLAIRVOYANCE, this tool however generates many false
alarms, making the confirmation of which rather difficult.
This could be a common problem for many static analyzers.

Although high false positive rate could be well addressed
by fuzzing tools by running contracts with generated inputs,
existing techniques are limited to maximum two contracts
(i.e., input contract and tested contract). In our investigation
of two currently representative fuzzing tools SFUZZ and
CONTRACTFUZZER, cross-contract calls are largely over-
looked, and thus leads to missed vulnerabilities. To sum
up, most of the existing methods and tools are still limited to
handle non-cross-contract vulnerabilities, which motivates
this work to bridge such a gap towards solving the currently
urgent demands.

3 OVERVIEW

Detecting cross-contract vulnerability often requires exam-
ining a large number of sequence transactions and thus can
be quite computationally expensive some even infeasible. In
this section, we give an overall high-level description of our
method, e.g., focusing on fuzzing suspicious transactions
based on the guideline of a machine learning (ML) model.
Technically, there are three challenges of leveraging ML to
guide the effective fuzzing cross-contracts for vulnerability
detection:
C1 How to train the machine learning model and achieve

satisfactory precision and recall.
C2 How to combine trained model with fuzzer to reduce

search space towards efficient fuzzing.
C3 How to empower the guided fuzzer the support of

effective cross-contract vulnerability detection.

In the rest of this section, we provide an overview of
XFUZZ which aims at addressing the above challenges, as
shown in Figure 5. Generally, the framework can be separated
into two phases: machine learning model training phase and
guided fuzzing phase.

3.1 Machine Learning Model Training Phase
In previous works [36], [37], fuzzers are limited to prior
knowledge of vulnerabilities and they are not well general-
ized against vulnerable variants. In this work, we propose
to leverage ML predictions to guide fuzzers. The benefit of
using ML instead of a particular static tool is that ML model
can reduce bias introduced by manually defined detection
rules.

In this phase, we collect training data, engineer features,
and evaluate models. First, we employ the state-of-the-arts
SLITHER, SECURIFY and SOLHINT to detect vulnerabilities on
the dataset. Next, we collect their reports to label contracts.
The contract gains at least two votes are labeled as vulnera-
bility. After that, we engineer features. The input contracts
are compiled into bytecode then vectorized into vectors by
Word2Vec [29]. To address C1, they are enriched by combin-
ing with static features (e.g., can_send_eth, has_call and
callee_external, etc.). These static features are extracted
from ASTs and CFGs. Eventually, the features are used as
inputs to train the ML models. In particular, the precision
and recall of models are evaluated to choose three candidate
models (e.g., XGBoost [38], EasyEnsembleClassifier [39] and
Decision Tree), among which we select the best one.

3.2 Guided Testing Phase
In guided testing phase, contracts are input to the pretrained
models to obtain predictions. After that, the vulnerable con-
tracts are analyzed and pinpointed. To address challenge C2,
the functions that are predicted as suspiciously vulnerable
ones. Then we use call-graph analysis and control-flow-graph
analysis to construct cross-contract call path. After we collect
all available paths, we use the path prioritization algorithm
to prioritize them. The prioritization becomes the guidance of
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Fig. 5: The overview of XFUZZ framework.

TABLE 1: Vulnerability detection capability of voting static
tools.

Slither Solhint Securify

Reentrancy ● ● ●
Tx-origin ● ●

Delegatecall ●

the fuzzer. This guidance of model predictions significantly
reduces search space because the benign functions wait until
the vulnerable ones finish. The fuzzer can focus on vulnerable
functions and report more vulnerabilities.

To address C3, we extract static information (e.g., function
parameters, conditional paths) of contracts to enrich model
predictions. The predictions and the static information are
combined to compute path priority scores. Based on this, the
most exploitable paths are prioritized, where vulnerabilities
are more likely found. Here, the search space of exploitable
paths is further reduced and the cross-contract fuzzing is
therefore feasible by invoking vulnerability through available
paths.

4 MACHINE LEARNING GUIDANCE PREPARATION

In this section, we elaborate on the training of our ML
model for fuzzing guidance. We discuss the data collection
in Section 4.1 and introduce feature engineering in Section
4.2, followed by candidate model evaluation in Section 4.3.

4.1 Data Collection

SMARTBUGS [31] and SWCREGISTRY [40] are two representa-
tives of existing smart contract vulnerability benchmarks.
However, their labeled data is scarce and the amount
currently available is insufficient to train a good model.
Therefore, we choose to download and collect contracts from
Etherscan (https://etherscan.io/), a prominent Ethereum
service platform. Overall, to be representative, we collect a
large set of 100,139 contracts in total for further processing.

The collected dataset is then labeled based on the voting
results of three most well-rated static analyzers (i.e., SOLHINT
[11] v2.3.1, SLITHER [10] v0.6.9 and SECURIFY [9] v1.0 ). The
three tools are chosen based on the fact that they are ❶

TABLE 2: The seven static features adopted in model training

Feature Name Type Description

has modifier bool whether has a modifier
has call bool whether contains a call operation

has delegate bool whether contains a delegatecall
has tx origin bool whether contains a tx-origin operation
has balance bool whether has a balance check operation

can send eth bool whether supports sending ethers
callee external bool whether contains external callees

state-of-the-art static analyzers and ❷ well maintained and
frequently updated. The detection capability vary among
these tools (as shown in Table 1). We then vote to label the
dataset aiming at eliminating the bias of each tool. Note
that the two vulnerabilities (i.e., delegatecall and tx-origin)
are hardly supported by existing tools. Therefore, we only
vote vulnerable functions on vulnerabilities supported by
at least two tools. That is, for reentrancy, the voting results
are counted in the way that the function gain at least two
votes is deemed as vulnerability; for tx-origin, the function is
deemed as vulnerability when it gains at least one vote. As
for delegatecall vulnerability, we label all reported functions
as vulnerable ones.

As a result, we collect 788 reentrancy, 40 delegatecall and
334 tx-origin vulnerabilities, respectively. All of the above
vulnerabilities are manually confirmed by two authors of this
paper, both of whom have more than 3 years development
experience for smart contracts, to remove false alarms.

4.2 Feature Engineering
Then, both vulnerable and benign functions are preprocessed
by SLITHER to extract their runtime bytecode. After that,
Word2Vec [29] is leveraged to transform the bytecode into a
20-dimensional vector. However, as reported in [41], vectors
alone are still insufficient for training a high-performance
model. To address this, we enrich the vectors with 7 ad-
ditional static features extracted from CFGs. In short, the
features are 27 dimensions in total, in which 20 are yielded
by Word2Vec and the other 7 are summarized in Table 2.

Among the 7 static features, has_modifier, has_call,
has_balance, callee_external and can_send_eth are
static features. We collect them by utilizing static analysis
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techniques. The feature has_modifier is designed to iden-
tify existing program guards. In smart contract programs,
the function modifier is often used to guard a function from
arbitrary access. That is, a function with modifier is less
like a vulnerable one. Therefore, we make the modifier as
a counter-feature to avoid false alarms. Feature has_call
and feature has_balance are designed to identify external
calls and balance check operations. These two features are
closely connected with transfer operations. We prepare them
to better locate the transfer behavior and narrow search space.
Feature callee_external provides important information
on whether the function has external callees. This feature
is used to capture risky calls. In smart contracts, cross-
contract calls are prone to be exploited by attackers. Feature
can_send_eth extracts static information (e.g., whether the
function has transfer operation) to figure out whether the
function has ability to send ethers to others. Considering the
vulnerable functions often have risky transfer operations, this
feature can help filtering out benign functions and reduce
false positive reports.

The remaining three features, i.e., has_delegate and
has_tx_origin correspond to particular key opcodes used
in vulnerabilities. Specifically, feature has_delegate corre-
sponds to the opcode DELEGATECALL in delegatecall vulner-
abilities, feature has_tx_origin corresponds to the opcode
ORIGIN in tx-origin vulnerabilities. These two features are
specifically designed for the two vulnerabilities, as their
names suggest. Note that the features can be easily updated
to support detection on new vulnerabilities. If the new
vulnerability shares similar mechanism with the above three
vulnerabilities or is closely related to them, the existing
features can be directly adopted; otherwise, one or two
new specific features highly correlated with the new type
of vulnerability should be added. The 7 static features are
combined with word vectors, which together form the input
to our ML models for further training.

4.3 Model Selection
In this section, we train and evaluate diverse candidate
models, based on which we select the best one to guide
fuzzers. To achieve this, one challenge we have to address
first is the dataset imbalance. In particular, there are 1,162
vulnerabilities and 98,977 benign contracts. This is not
rare in ML-based vulnerability detection tasks [42], [43].
In fact, our dataset endures imbalance in rate of 1:126 for
reentrancy, 1:2,502 for delegatecall and 1:298 for tx-origin.
Such imbalanced dataset can hardly be used for training.

To address the challenge, we first eliminate the duplicated
data. In fact, we found 73,666 word vectors are exactly same
to others. These samples are different in source code, but
after they are compiled, extracted and transformed into
vectors, they share the same values, because most of them are
syntactically identical clones [44] at source code level. After
our remedy, data imbalance comes to 1:31 for reentrancy,
1:189 for delegatecall and 1:141 for tx-origin. Still the dataset
is highly imbalanced.

As studied in [45], the imbalance can be alleviated by
data sampling strategies. However, we find that sampling
strategies like oversampling [46] can hardly improve the
precision and recall of models because the strategy introduces
too much polluted data instead of real vulnerabilities.

Fig. 6: The P-R Curve of models. The dashed lines represent
performance on training set, while the solid lines represent
performance on validation set.

TABLE 3: The performance of evaluated ML models.

Model Name Precision Recall

EasyEnsembleClassifier 26% 95%
XGBoost 66% 48%

DecisionTree 70% 43%
SupportVectorMachine 60% 14%

KNeighbors 50% 43%
NaiveBayes 50% 59%

LogiticRegression 53% 38%

We then attempt to evaluate models to select one that fits
the imbalanced data well. Note that to counteract the impact
of different ML models, we try to cover as many candidate
ML methods as possible, among which we select the best one.
The models we evaluated including tree-based models XGBT
[38], EEC [39], Decision Tree (DT), and other representative
ML models like Logistic Regression, Bayes Models, SVMs
and LSTM [47]. The performance of the models can be found
at Table 3. We find that the tree-based models achieve better
precision and recall than others. Other non-tree-based models
are biased towards the major class and hence show very poor
classification rates on minor classes. Therefore, we select
XGBT, EEC and DT as the candidate models.

The precision-recall curves of the three models on positive
cases are shown on Figure 6. In this figure, the dashed lines
denote models fitting with validation set and solid lines
denote fitting with testing set. Intuitively, model XGBT and
model EEC achieve better performance with similar P-R
curves. However, EEC performs much better than XGBT in
recall. In fact, model XGBT holds a precision rate of 66% and
a recall rate of 48%. Comparatively, model EEC achieves a
precision rate of 26% and a recall rate of 95%. We remark
that our goal is not to train a model that is very accurate,
but rather a model that allows us to filter as many benign
contracts as possible without missing real vulnerabilities.
Therefore, we select the EEC model for further guiding the
fuzzing process.

4.4 Model Robustness Evaluation

To further evaluate the robustness of our selected
model and to assess that to how much extent can our
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TABLE 4: The coverage rate (CR) score of ML model on other
tools.

CR(Slither) CR(Securify) CR(Solhint)

Reentrancy 83.6% 81.1% 86.3%
Tx-origin 91.9% N.A. 75.1%

Delegatecall 90.6% N.A. N.A.

model represent existing analyzers, we conduct evalu-
ation of comparing the vulnerability detection on un-
known dataset between our model and other state-of-
the-art static analyzers. The evaluation dataset is down-
load from a prominent third-party blockchain secu-
rity team (https://github.com/tintinweb/smart-contract-
sanctuary). We select smart contracts released in version
0.4.24 and 0.4.25 (i.e., the majority versions of existing smart
contract applications [48]) and remove the contracts which
has been used in our previous model training and model
selection. After all, we get 78,499 contracts in total for
evaluation.
Definition 7 (Coverage Rate of ML Model on Another Tool).

Given the true positive reports of ML model Rm, the true
positive reports of another tool Rt, a coverage rate of ML
model CR(t) on the tool is calculated as:

CR(t) = (Rm ∩Rt)/Rt (1)

The results are listed in Table 4. Here, we use the coverage
rate (CR) to evaluate the representativeness of our model
regarding the three vulnerabilities. Specifically, the coverage
rate measures how much reports of ML model are intersected
with static analyzer tools. The coverage rate CR is calculate
as listed in Definition 7. The N.A. in the table denotes that the
detection of this vulnerability is not support by the analyzer.

Our evaluation results show that the reports of our tool
can cover a majority of reports of other tools. Specifically, the
trained ML model can well approximate the capability of
each static tool used in vulnerability labeling and model
training. For example, 81.1% of true positive reports of
SECURIFY on reentrancy are also contained in our ML
model’s reports. Besides, 75.1% of true positive reports of
SOLHINT on Tx-origin and 90.6% of true positive reports of
SLITHER on Delegatecall are also covered.

5 GUIDED CROSS-CONTRACT FUZZING

5.1 Guidance Algorithm
The pretrained models are applied to guide fuzzers in the
ways that the predictions are utilized to ❶ locate suspicious
functions and ❷ combine with static information for path
prioritization.

Our guidance is based on both model predictions and
the priority scores computed from static features. The reason
is that even with the machine learning model filtering, the
search space is still rather large, which is evidenced by the
large number of paths explored by SFUZZ (e.g., the 2,596
suspicious functions have 873 possibly vulnerable paths),
and thus we propose to first prioritize the path.

The overall process of our guided fuzzing can be found
at Algorithm 1. In this algorithm, we first retrieve function
list of an input source at line 1. Next, from line 3 to line 8, we

Algorithm 1: Machine learning guided fuzzing
input : IS, all the input smart contract source code
input :M , suspicious function detection ML model
input :TRs← ∅, the set of potentially vulnerable

function execution paths
output :V ← ∅, the set of vulnerable paths

1 Fs ← IS.getFunctionList()
2 // get the functions in a contract
3 foreach function f ∈ Fs do
4 if ifIsSuspiciousFunction(f,M) is True then
5 // employ ML models to predict

whether the function is suspicious
6 Sfunc ← getFuncPriorityScore(f)
7 Scaller ← getCallerPriorityScore(f)
8 TRs← TRs ∪ {f, Sfunc, Scaller}
9 // get scores for each function

10 PTR← PrioritizationAlgorithm(TRs)
11 // Prioritized paths
12 V ← ∅
13 // the output vulnerability list
14 while not timeout do
15 T ← PTR.pop()
16 // pop up trace with higher priority
17 FuzzingResult← Fuzzing(T )
18 if FuzzingResult is Vulnerable then
19 V ← V ∪ {T}
20 else
21 continue

22 return V

1 contract Wallet{
2 function withdraw(address addr, uint value){
3 addr.transfer(value);
4 }
5 function changeOwner(address[] addrArray,

uint idx) public{
6 require(msg.sender == owner);
7 owner = addrArray[idx];
8 withdraw(owner, this.balance);
9 } }

10 contract Logic{
11 function logTrans(address addr_w, address

_exec, uint _value, bytes infor) public{
12 Wallet(addr_w).withdraw(_exec, _value);
13 } }

Fig. 7: An example of prioritizing paths.

calculate the path priority based on two scores (i.e., function
priority scores and caller priority scores) for each path. Both
scores are designed for prioritizing suspicious functions.
After the calculation, the results are saved together with
the function itself. In line 10, we prioritize the suspicious
function paths. The prioritization algorithm can be found
at Algorithm 2. The trace with higher priority will be first
tested by fuzzers. Finally, from line 14 to line 21, we pop up
a candidate trace from prioritized list and employ fuzzers to
conduct focus fuzzing. The fuzzing process will not end until
it reaches an timeout limitation. The found vulnerability will
be return as final result.

The details of our prioritization algorithm are shown in
Algorithm 2. The input of the algorithm is the functions and
their corresponding priority scores. The scores are calculated
in Algorithm 1. The output of the algorithm is the prioritized
vulnerable paths. Specifically, the first step of the algorithm is
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Algorithm 2: Priorization Algorithm
input :M , The trained machine learning model
input :TRs, functions and their priority scores
output :PTR, the set of prioritized vulnerable paths

1 while isNotEmpty(TRs) do
2 TRs← sortByFunctionPriority(TRs)
3 function f ← TRs.pop()
4 paths Ps← getAllPaths(f)
5 while isNotEmpty(Ps) do
6 Ps← sortByCallerPriority(Ps)
7 P ← Ps.pop()
8 PTR← PTR ∪ P

9 return PTR

getting the prioritized function based on the function priority
score, as shown in line 2 and line 3. The functions with lower
function priority scores will be prioritized. Next, we sort all
call paths (no matter cross-contract or non-cross-contract call)
which are correlated to the function, as shown from line 4 to
line 6. We pop up the call path which has the highest priority
and add it to the prioritized path set. The prioritized path
set will guide fuzzer to test call path in a certain order.

To summarize, the goal of our guidance algorithm is
to prioritize cross-contract paths, which are penetrable but
usually overlooked by previous practice [15], [14], and to
further improve the fuzzing testing efficiency on cross-
contract vulnerabilities.

5.2 Priority Score

Generally, the path priority consists of two parts: function pri-
ority and caller priority. The function priority is for evaluating
the complexity of function and the caller priority is designed
to measure the cost to traverse a path.

Function Priority. We collect static features of functions
to compute function priority. After that, a priority score can
be obtained. The lower score denotes higher priority.

We first mark the suspicious functions by model predic-
tions. A suspicious function is likely to contain vulnerabilities
so it is provided with higher priority. We implement this as a
factor fs which equals 0.5 for suspicious function otherwise
1 for benign functions. For example, in Figure 7, the function
withdraw is predicted as suspicious so that the factor fs
equals 0.5.

Next, we compute the caller dimensionality SC . The
dimensionality is the number of callers of a function. In cross-
contract fuzzing, a function with multiple callers requires
more testing time to traverse all paths. For example, in Figure
7, function withdraw in contract Wallet has an internal
caller changeOwner and an external caller logTrans, thus
the dimensionality of this function is 2.

The parameter dimensionality SP is set to measure
the complexity of parameters. The functions with complex
parameters (i.e., array, bytes and address parameters) are
assigned with lower priority, because these parameters often
increase the difficulty of penetrating a function. Specifically,
one parameter has 1 dimensionality except for the complex
parameters, i.e., they have 2 dimensionalities. The parameter
dimensionality of a function is the sum of parameters di-
mensionalities. For example, in Figure 7, function withdraw

and changeOwner both have an address and an integer
parameter thus their dimensionality is 3. Function logTrans
has two addresses, a byte and an integer parameter, so the
dimensionality is 7.
Definition 8 (Function Priority Score). Given the suspicious

factor fs, the caller dimensionality score SC and the
parameter dimensionality score SP , a function priority
score Sfunc is calculated as:

Sfunc = fs × (SC + 1)× (SP + 1) (2)

In this formula, we add 1 to the caller dimensionality
and parameter dimensionality to avoid the overall score to
be 0. The priority scores in Figure 7 are: function withdraw
= 6, function changeOwner = 4, function logTrans = 8.
The results show that function changeOwner has highest
priority because function withdraw has two callers to
traverse meanwhile function logTrans is more difficult for
penetration than changeOwner.

Caller Priority. We traverse every caller of a function
and collect their static features, based on which we compute
the priority score to decide which caller to test first. Firstly,
the number of branch statements (e.g., if, for and while)
and assertions (e.g., require and assert) are counted
to measure condition complexity Comp to describe the
difficulties to bypass the conditions. The path with more
conditions is in lower priority. For example, in Figure 7,
function withdraw has two callers. One caller changeOwner
has an assertion at line 6, so the complexity is 1. The other
caller logTrans contains no conditions thus the complexity
is 0.

Next, we count the condition distance. SFUZZ selects
seed according to branch-distance only, which is not ideal
for identifying the three particular kinds of cross-contract
vulnerabilities that we focus on in this work. Thus, we
propose to consider not only branch distance but also this
condition distance CondDis. This distance is intuitively the
number of statements from entry to condition. In case of the
function has more than one conditions, the distance is the
number of statements between entry and first condition. For
example, in Figure 7, the condition distance of changeOwner
is 1 and the condition distance of logTrans is 0.
Definition 9 (Caller Priority Score). Given the condition

distance CondDis and the path condition complexity
Comp, a path priority score Scaller is calculated as:

Scaller = (CondDis+ 1)× (Comp+ 1) (3)

Finally, the caller priority score is computed based on
condition complexity and condition distance, as shown in
Definition 9. The complexity and distance add 1 so that the
overall score is not 0. The caller priority scores in Figure 7 are:
logTrans → withdraw = 1, changeOwner → withdraw =
4. Function changeOwner has identity check at line 6, which
increase the difficulty to penetrate. Thus, the other path from
logTrans to withdraw is prior.

5.3 Cross-contract Fuzzing
Given the prioritized paths, we utilized cross-contract
fuzzing to improve fuzzing efficiency. Here, we implement
this fuzzing technique by the following steps: 1) The contracts
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Fig. 8: The cross-contract fuzzing process.

under test should be deployed on EVM. As shown in Figure
8, the fuzzer will first deploy all contracts on a local private
chain to facilitate cross-contract calls among contracts. 2)
The path-unrelated functions will be called. Here, the path-
unrelated functions denote functions that do not appear in
the input prioritized paths. We run them first to initialize
state variables of a contract. 3) We store the function selectors
appeared in all contracts. The function selector is the unique
identity recognizer of a function. It is usually encoded in
4-byte hex code [49]. 4) The fuzzer checks whether there is a
cross-contract call. If not, the following step 5 and step 6 will
be skipped. 5) The fuzzer automatically searches local states
to find out correct function selectors, and then directly trigger
a cross-contract call to the target function in step 6. 7) The
fuzzer compares the execution results against the detection
rules and output reports.

6 EVALUATION

XFUZZ is implemented in Python and C with 3298 lines
of code. All experiments are run on a computer which is
running Ubuntu 18.04 LTS and equipped with Intel Xeon
E5-2620v4, 32GB memories and 2TB HDD.

For the baseline comparison, XFUZZ is compared with the
state-of-art fuzzer SFUZZ [14], a previously published testing
engine CONTRACTFUZZER [15] and a static cross-contract
analysis tool CLAIRVOYANCE [19]. The recently published
tool ECHIDNA [16] relies on manually written testing oracles,
which may lead to different testing results depending on de-
veloper’s expertise. Thus, it is not compared. Other tools (like
HARVEY [21]) are not publicly available for evaluation, and
thus are not included in our evaluations. We systematically
run all four tools on the contract datasets. Notably, to verify
the authenticity of the vulnerability reports, we invite senior
technical experts from security department of our industry
partner to check vulnerable code. Our evaluation aims at
investigating the following research questions (RQs).
RQ1. How effective is XFUZZ in detecting cross-contract

vulnerabilities?
RQ2. To what extent the machine learning models and the

path prioritization contribute to reducing the search
space?

RQ3. What are the overhead of XFUZZ, compared to the
vanilla SFUZZ?

TABLE 5: Evaluations on Dataset1. The ✔ represents the tool
successfully finds vulnerability in this function, otherwise
the tool is marked with ✖.

Address ContractFuzzer xFuzz sFuzz

0x7a8721a9 ✖ ✔ ✖
0x4e73b32e ✖ ✔ ✔
0xb5e1b1ee ✖ ✔ ✔
0xaae1f51c ✖ ✔ ✔
0x7541b76c ✖ ✔ ✖

... ... ... ...

Summary ContractFuzzer xFuzz sFuzz

0/18 9/18 5/18

RQ4. Can XFUZZ discover real-world unknown cross-
contract vulnerabilities, and what are the reasons for
false negatives?

6.1 Dataset Preparation

Our evaluation dataset includes smart contracts from three
sources: 1) datasets from previously published works (e.g.,
[30] and [31]); 2) smart contract vulnerability websites with
good reputation (e.g., [40]); 3) smart contracts downloaded
from Etherscan. The dataset is carefully checked to remove
duplicate contracts with dataset used in our machine learning
training. Specifically, the DataSet1 includes contracts from
previous works and famous websites. After we remove
duplicate contracts and toy-contract (i.e., those which are
not deployed on real world chains), we collect 18 labeled
reentrancy vulnerabilities. To enrich the evaluation dataset,
our Dataset2 includes contracts downloaded from Etherscan.
We remove contracts without external calls (they are irrel-
evant to cross-contract vulnerabilities) and contracts that
are not developed by using Solidity 0.4.24 and 0.4.25 (i.e.,
the most two popular versions of Solidity [48]). In the end,
7,391 contracts are collected in Dataset2. The source code of
the above datasets are publicly available in our website [32]
so that the evaluations are reproducible, benefiting further
research.

6.2 RQ1: Vulnerability Detection Effectiveness

We first conduct evaluations on Dataset1 by comparing
three tools CONTRACTFUZZER, SFUZZ and XFUZZ. The
CLAIRVOYANCE is not included because it is a static analysis
tool. For the sake of page space, we present a part of the
results in Table 5 with an overall summary and leave the
whole list available at here1.

In this evaluation, CONTRACTFUZZER fail to find a vulner-
ability among the contracts. SFUZZ missed 3 vulnerabilities
and outputted 9 incorrect reports. Comparatively, XFUZZ
missed 2 vulnerabilities and outputted 6 incorrect reports.
The reason of the missed vulnerabilities and incorrect reports
lies on the difficult branch conditions (e.g., an if statement
with 3 conditions) which blocks the fuzzer to traverse
vulnerable branches. Note that XFUZZ is equipped with
model guidance so that it can focus on fuzzing suspicious
functions and find more vulnerabilities than SFUZZ.

1. https://anonymous.4open.science/r/xFuzzforReview-ICSE/
Evaluation\%20on\%20Open-dataset.pdf
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TABLE 6: Performance of XFUZZ, CLAIRVOYANCE (C.V.),
CONTRACTFUZZER (C.F.), SFUZZ on cross-contract vulnera-
bilities.

reentrancy delegatecall tx-origin
P% R% #N P% R% #N P% R% #N

C.F. 0 0 0 0 0 0 0 0 0
SFUZZ 0 0 0 0 0 0 0 0 0
C.V. 43.7 43.7 16 0 0 0 0 0 0

XFUZZ 100 81.2 13 100 100 3 100 100 2

While we compare our tool with existing works on
publicly available Dataset1, the dataset only provides non-
cross-contract labels thus cannot be used to verify our
detection ability on cross-contract ones. To complete this,
we further evaluate the effectiveness of cross-contract and
non-cross-contract fuzzing on Dataset2. To reduce the effect
of randomness, we repeat each setting 20 times, and report
the averaged results.

6.2.1 Cross-contract Vulnerability.
The results are summarized in Table 6. Note that the
“P%” and “R%” represent precision rate and recall rate,
“#N” is the number of vulnerability reports. “C.V.” means
CLAIRVOYANCE and “C.F.” means CONTRACTFUZZER. Cross-
contract vulnerabilities are currently not supported by CON-
TRACTFUZZER, SFUZZ and thus they report no vulnerabilities
detected.

Precision. CLAIRVOYANCE managed to find 7 true cross-
contract reentrancy vulnerabilities. In comparison, XFUZZ
found 9 cross-contract reentrancy, 3 cross-contract delegate-
call and 2 cross-contract tx-origin vulnerabilities. The two
tools found 21 cross-contract vulnerabilities in total. CLAIR-
VOYANCE report 16 vulnerabilities but only 43.7% of them
are true positives. In contrast, XFUZZ generates 18 (13+3+2)
reports of three types of cross-contract vulnerabilities and
all of them are true positives. The reason of the high false
positive rate of CLAIRVOYANCE is mainly due to its static
analysis based approach, without runtime validation. We
further check the 18 vulnerabilities on some third-party
security expose websites [50], [40], [31] and we find 15 of
them are not flagged.

Recall. The 9 vulnerabilities missed by CLAIRVOYANCE
are all resulted from the abuse of detection rules, i.e., the
vulnerable contracts are filtered out by unsound rules. In
total, 3 cross-contract vulnerabilities are missed by XFUZZ.
A close investigation shows that they are missed due to
the complex path conditions, which blocks the input from
penetrating the function. We also carefully check false
negatives missed by XFUZZ, and find they are not reported
by CONRACTFUZZER and SFUZZ as well. While existing
works all fail to penetrate the complex path conditions, we
believe this limitation can be addressed by future works.

6.2.2 Non-Cross-contract Vulnerability.
The experiment results show that XFUZZ improves detection
of non-cross-contract vulnerabilities as well (see Table 7).
For reentrancy, CONTRACTFUZZER achieves the best 100%
precision rate but the worst 1.7% recall rate. SFUZZ and
CLAIRVOYANCE identified 33.5% and 40.4% vulnerabilities.
XFUZZ has a precision rate of 95.5%, which is slightly lower

TABLE 7: Performance of XFUZZ, CLAIRVOYANCE, CON-
TRACTFUZZER and SFUZZ on non-cross-contract evaluations.

reentrancy delegatecall tx-origin
P% R% #N P% R% #N P% R% #N

C.F. 100 1.7 3 0 0 0 0 0 0
SFUZZ 84.2 33.5 70 100 54.3 19 0 0 0
C.V. 48.3 40.4 145 0 0 0 0 0 0

XFUZZ 95.5 84.6 156 100 100 35 100 100 25

Fig. 9: Comparison of reported vulnerabilities between
XFUZZ and SFUZZ regarding reentrancy.

than that of CONTRACTFUZZER, and more importantly, the
bests recall rate of 84.2%. XFUZZ exhibits strong capability in
detecting vulnerabilities by finding a total of 209 (149+35+25)
vulnerabilities.

Precision. For reentrancy, CLAIRVOYANCE reports 75 false
positives, because of ❶ the abuse of detection rules and
❷ unexpected jump to unreachable paths due to program
errors. The 11 false positives of SFUZZ are due to the
misconceived ether transfer. SFUZZ captures ether transfers
to locate dangerous calls. However, the ethers from attacker
to victim is also falsely captured. The 7 false alarms of XFUZZ
are due to the mistakes of contract programmers by calling a
nonexistent functions. These calls are however misconceived
as vulnerabilities by XFUZZ.

Recall. CLAIRVOYANCE missed 59.6% of the true posi-
tives. The root cause is the adoption of unsound rules during
static analysis. SFUZZ missed 117 reentrancy vulnerabilities
and 16 delegatecall vulnerabilities due to (1) timeout and (2)
incapability to find feasible paths to the vulnerability. XFUZZ
missed 27 vulnerabilities due to complex path conditions.

Answer to RQ1: Our tool XFUZZ achieves a precision
of 95.5% and a recall of 84.6%. Among the evaluated
four methods, XFUZZ achieves the best recall. Besides,
XFUZZ successfully finds 209 real-world non-cross-
contract vulnerabilities as well as 18 real-world cross-
contract vulnerabilities.

6.3 RQ2: The Effectiveness of Guided Testing

This RQ investigates the usefulness of the ML model and
path prioritization for the guidance of fuzzing. To answer this
RQ, we compare SFUZZ with a customized version of XFUZZ,
i.e., which differs from SFUZZ only by adopting the ML
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Fig. 10: Comparison of reported vulnerabilities between
XFUZZ and SFUZZ regarding delegatecall.

model (without focusing on cross-contract vulnerabilities).
The intuition is to check whether the ML model enables us
to reduce the time spent on benign contracts and thus reveal
vulnerabilities more efficiently. That is, we implement XFUZZ
such that each contract is only allowed to be fuzzed for tl
seconds if the ML model considers the contract benign; or
otherwise, 180 seconds, which is also the time limit adopted
in SFUZZ. Note that if tl is 0, the contract is skipped entirely
when it is predicted to be benign by the ML model. The
goal is to see whether we can set tl to be a value smaller
than 180 safely (i.e., without missing vulnerabilities). We thus
systematically vary the value of tl and observe the number
of identified vulnerabilities.

The results are summarized in Figure 9 and Figure 10.
Note that the tx-origin vulnerability is not included since
it is not supported by SFUZZ. The red line represents vul-
nerabilities only found by XFUZZ, the green line represents
vulnerabilities only reported by SFUZZ and the blue line
denotes the reports shared by both two tools. We can see that
the curves climb/drop sharply at the beginning and then
saturate/flatten after 30s, indicating that most vulnerabilities
are found in the first 30s.

We observe that when tl is set to 0s (i.e., contracts
predicted as benign are skipped entirely), XFUZZ still detects
82.8% (i.e., 111 out of 134, or equivalently 166% of that of
SFUZZ) of the reentrancy vulnerabilities as well as 65.0%
of the delegatecall vulnerability (13 out of 20). The result
further improves if we set tl to be 30 seconds, i.e., almost
all (except 2 out of 174 reentrancy vulnerabilities; and none
of the delegatecall vulnerabilities) are identified. Based on
the result, we conclude that the ML model indeed enables to
reduce fuzzing time on likely benign contracts significantly
(i.e., from 180 seconds to 30 seconds) without missing almost
any vulnerability.

The Effectiveness of Path Prioritization. To evaluate
the relevance of path prioritization, we further analyze the
results of the customized version of XFUZZ as discussed
above. Recall that path prioritization allows us to explore
likely vulnerable paths before the remaining. Thus, if path
prioritization works, we would expect that the vulnerabilities
are mostly found in paths, where XFUZZ explores first. We
thus systematically count the number of vulnerabilities found
in the first 10 paths which are explored by XFUZZ. The results

TABLE 8: The paths reported by XFUZZ and SFUZZ. The
vulnerable paths found by the two tools are counted respec-
tively.

Found by Vul Total Number in the Top
Top10 Other

xFuzz Reentrancy 172 152 20
sFuzz Reentrancy 59 57 2
xFuzz Delegatecall 33 32 1
sFuzz Delegatecall 19 19 0

TABLE 9: The time cost of each step in fuzzing procedures.

sFuzz C.V. xFuzz

MPT(min)
Reentrancy N.A. N.A. 630.6
Delegatecall N.A. N.A. 630.6

Tx-origin N.A. N.A. 630.6

ST(min)
Reentrancy 21,930.0 N.A. 3,621.0
Delegatecall 22,131.0 N.A. 3,678.0

Tx-origin N.A. N.A. 3,683.0

DT(min)
Reentrancy 54.1 246.2 86.6
Delegatecall 2.8 N.A. 4.2

Tx-origin N.A. N.A. 2.9

Total(min)
Reentrancy 21,984.1 246.2 4,338.2
Delegatecall 22,133.8 N.A. 4,312.8

Tx-origin N.A. N.A. 4,316.5

are summarized in Table 8, where column “Top 10” shows
the number of vulnerabilities detected in the first 10 paths
explored.

The results show that, XFUZZ finds a total of 152 (out of
172) reentrancy vulnerabilities in the first 10 explored paths.
In particular, the number of found vulnerabilities in the first
10 explored paths by XFUZZ is almost three times as many
as that by SFUZZ. Similarly, XFUZZ also finds 32 (out of 33)
delegatecall vulnerabilities in the first 10 explored paths. The
results thus clearly suggest that path prioritization allows
us to focus on relevant paths effectively, which has practical
consequence on fuzzing large contracts.

Answer to RQ2: The ML model enables us to signif-
icantly reduce the fuzzing time on likely benign con-
tracts without missing almost any vulnerabilities. Fur-
thermore, most vulnerabilities are detected efficiently
through our path prioritization. Overall, XFUZZ finds
twice as many reentrancy or delegatecall vulnerabilities
as SFUZZ.

6.4 RQ3: Detection Efficiency
Next, we evaluate the efficiency of our approach. We record
time taken for each step during fuzzing and the results are
summarized in Table 9. To eliminate randomness during
fuzzing, we replay our experiments for five times and report
the averaged results. In this table, “MPT” means model
prediction time; “ST” means search time for vulnerable paths
during fuzzing; “DT” means detection time for CLAIRVOY-
ANCE and fuzzing time for the fuzzers. “N.A.” means that
the tool has no such step in fuzzing or the vulnerability
is currently not supported by it, and thus the time is not
recorded.

The efficiency of our method (i.e., by reducing the search
space) is evidenced as the results show that XFUZZ is
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1 function buyOne(address _exchange, uint256
_value, bytes _data) payable public

2 {
3 ...
4 buyInternal(_exchange, _value, _data);
5 }
6 function buyInternal(address _exc, uint256

_value, bytes _data) internal
7 {
8 ...
9 require(_exc.call.value(_value)(_data));

10 balances[msg.sender] = balances[msg.sender
].sub(_value);

11 }

Fig. 11: A real-world reentrancy vulnerability found by
XFUZZ, in which the vulnerable path relies on internal calls.

obviously faster than SFUZZ, i.e., saving 80% of the time.
The main reason for the saving is due to the saving on
the search time (i.e., 80% reduction). We also observe that
XFUZZ is slightly slower than SFUZZ in terms of the effective
fuzzing time, i.e., an additional 32.5 (86.6-54.1) min is used
for fuzzing cross-contract vulnerabilities. This is expected as
the number of paths is much more (even after the reduction
thanks to the ML model and path prioritization) than that
in the presence of more than 2 interacting contracts. Note
that CLAIRVOYANCE is faster than all tools because this tool
is a static detector without perform runtime execution of
contracts.

Answer to RQ3: Owing to the reduced search space
of suspicious functions, the guided fuzzer XFUZZ
saves over 80% of searching time and reports more
vulnerabilities than SFUZZ with less than 20% of the
time.

6.5 RQ4: Real-world Case Studies
In this section, we present 2 typical vulnerabilities re-

ported by XFUZZ to qualitatively show why XFUZZ works.
In general, the ML model and path prioritization help XFUZZ
find vulnerabilities in three ways, i.e., ❶ locate vulnerable
functions, ❷ identify paths from internal calls and ❸ identify
feasible paths from external calls.

Real-world Case 1: XFUZZ is enhanced with path priori-
tization, which enables it to focus on vulnerabilities related
to internal calls. In Figure 112, the modifier internal limits
the access only to internal member functions. The attacker
can however steal ethers by path buyOne → buyInternal.
By applying XFUZZ, the vulnerability is identified in 0.05
seconds and the vulnerable path is also efficiently exposed.

Real-world Case 2: The path prioritization also enables
XFUZZ to find cross-contract vulnerabilities efficiently. For
example, a real-world cross-contract vulnerability3 is shown
in Figure 12. This example is for auditing transactions in real-
world and involves with over 2,000 dollars. In this example,
function registerAudit has a cross-contract call to a public
address CSolidStamp at line 13, which intends to forward
the call to function audContract. While this function is only
allowed to be accessed by the registered functions, as limited
by modifier onlyRegister, we can bypass this restriction

2. deployed at 0x0695B9EA62C647E7621C84D12EFC9F2E0CDF5F72
3. deployed at 0x165CFB9CCF8B185E03205AB4118EA6AFBDBA9203

1 contract SolidStamp{
2 function audContract(address _auditor) public

onlyRegister
3 {
4 ...
5 _auditor.transfer(reward.sub(commissionKept

));
6 }
7 }
8 contract SolidStampRegister{
9 address public CSolidStamp;

10 function registerAudit(bytes32 _codeHash)
public

11 {
12 ...
13 SolidStamp(CSolidStamp).audContract(msg.

sender);
14 }
15 }

Fig. 12: A cross-contract vulnerability found by XFUZZ. This
contract is used in auditing transactions in real-world.

1 if ((random()%2==1) && (msg.value == 1 ether)
&& (!locked))

2 \\at 0x11F4306f9812B80E75C1411C1cf296b04917b2f0
3
4 require(msg.value == 0 || (_amount == msg.value

&& etherTokens[fromToken]));
5 \\at 0x1a5f170802824e44181b6727e5447950880187ab

Fig. 13: Complex path conditions involving with multiple
variables and values.

by a cross-contract call registerAudit → audContrat.
Eventually, an attacker would be able to steals the ethers
in seconds.

Real-world Case 4:During our investigation on the exper-
iment results, we gain the insights that XFUZZ can be further
improved in terms of handling complex path conditions.
Complex path conditions often lead to prolonged fuzzing
time or blocking penetration altogether. We identified a total
of 3 cross-contract and 24 non-cross-contract vulnerabilities
that are missed due to such a reason. Two of such complex
condition examples (from two real-word false negatives
of XFUZZ) are shown in Figure 13. Function calls, values,
variables and arrays are involved in the conditions. These
conditions are difficult to satisfy for XFUZZ and fuzzers in
general (e.g., SFUZZ failed to penetrate these paths too). This
problem can be potentially addressed by integrating XFUZZ
with a theorem prover such that Z3 [51] which is tasked
to solve these path conditions. That is, a hybrid fuzzing
approach that integrates symbolic execution in a lightweight
manner is likely to further improve XFUZZ.

Answer to RQ4: With the help of model predictions
and path prioritization, XFUZZ is capable of rapidly
locating vulnerabilities in real-world contracts. The
main reason for false negatives is complex path con-
ditions, which could be potentially addressed through
integrating hybrid fuzzing into XFUZZ.

7 RELATED WORK

In this section, we discuss works that are most relevant to
ours.
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Program analysis. We draw valuable development expe-
rience and domain specific knowledge from existing work
[8], [10], [3], [4], [5]. Among them, SLITHER [10], OYENTE
[8] and Atzei et al. [5] provide a transparent overlook on
smart contracts detection and enhance our understanding
on vulnerabilities. Chen et al. [3] and Durieux et al. [4] offer
evaluations on the state-of-the-arts, which helps us find the
limitation of existing tools.

Cross-contract vulnerability. Our study is closely related
to previous works focusing on interactions between multiple
contracts. Zhou et al. [52] present work to analyze relevance
between smart contract files, which inspires us to focus on
cross-contract interactions. He et al. [24] report that existing
tools fail to exercise functions that can only execute at
deeper states. Xue et al. [19] studied cross-contract reentrancy
vulnerability. They propose to construct ICFG (combining
CFGs with call graphs) then track vulnerability by taint
analysis.

Smart contract testing. Our study is also relevant to
previous fuzzing work on smart contracts. Smart contract
testing plays an important role in smart contract security.
Zou et al. [7] report that over 85% of developers intend
to do heavy testing when programming. The work of
Jiang et al. [15] makes the early attempt to fuzz smart
contracts. CONTRACTFUZZER instruments Ethereum virtual
machine and then collects execution logs for further analysis.
Wüstholz et al. present guided fuzzer to better mutate
inputs. Similar method is implemented by He et al. [24].
They propose to learn fuzzing strategies from the inputs
generated from a symbolic expert. The above two methods
inspire us to leverage a guider to reduce search space.
Tai D et al. [14] implement a user-friendly AFL fuzzing
tool for smart contracts, based on which we build our
fuzzing framework. Different from these existing work, our
work makes a special focus on proposing novel ML-guided
method for fuzzing cross-contract vulnerabilities, which is
highly important but largely untouched by existing work.
Additionally, our comprehensive evaluation demonstrates
that our proposed technique indeed outperforms the state-
of-the-arts in detecting cross-contract vulnerabilities.

Machine learning practice. This work is also inspired
by previous work [53], [54], [55]. In their work, they pro-
pose learning behavior automata to facilitate vulnerability
detection. Zhuang et al. [56] propose to build graph networks
on smart contracts to extend understanding of malicious
attacks. Their work inspires us to introduce machine learning
method for detection. We also improve our model selection
by inspiration of work of Liu et al. [39]. Their algorithm
helps us select best models with satisfactory performance
on recall and precision on highly imbalanced dataset. Yan
et al. [55] have proposed a method to mimic the cognitive
process of human experts. Their work inspires us to find
the consensus of vulnerability evaluators to better train the
machine learning models.

Smart contract security to society. Smart contract has
drawn a number of security concerns since it came into being.
As figured out by Zou et al. [7], over 75% of developers
agree that the smart contract software has a much high
security requirement than traditional software. According
to [7], the reasons behind such requirement are: 1) The
frequent operations on sensitive information (e.g., digital

currencies, tokens); 2) The transactions are irreversible; 3)
The deployed code cannot be modified. Considering the close
connection between smart contract and financial activities,
the security of smart contract security largely effects the
stability of the society.

8 CONCLUSION

In this paper, we propose XFUZZ, a novel machine learning
guided fuzzing framework for smart contracts, with a special
focus on cross-contract vulnerabilities. We address two key
challenges during its development: the search space of
fuzzing is reduced, and cross-contract fuzzing is completed.
The experiments demonstrate that XFUZZ is much faster and
more effective than existing fuzzers and detectors. In future,
we will extend our framework with more static approach to
support more vulnerabilities.
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[6] O. G. Güçlütürk, “The dao hack explained: Unfortunate
take-off of smart contracts,” https://medium.com/@ogucluturk/
the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562,
2018, online; accessed 22 January 2018.

[7] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng,
Z. Chen, and B. Xu, “Smart contract development: Challenges and
opportunities,” IEEE Transactions on Software Engineering, vol. 47,
no. 10, pp. 2084–2106, 2019.

[8] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
CCS, 2016, pp. 254–269.

[9] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[10] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis frame-
work for smart contracts,” in 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), 2019, pp. 8–15.

[11] Protofire, “Solhint,” https://github.com/protofire/solhint, 2018,
online; accessed September 2018.

[12] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts.” in NDSS, 2018.

[13] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in WETSEB, 2018, pp. 9–16.

[14] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh,
“Sfuzz: An efficient adaptive fuzzer for solidity smart contracts,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20, New York, NY, USA, 2020, p. 778–788.

[15] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2018, pp. 259–269.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3182373

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 14,2023 at 06:02:55 UTC from IEEE Xplore.  Restrictions apply. 



14

[16] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceed-
ings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020, pp. 557–560.

[17] Q. Zhang, Y. Wang, J. Li, and S. Ma, “Ethploit: From fuzzing to
efficient exploit generation against smart contracts,” in 2020 IEEE
27th SANER. IEEE, 2020, pp. 116–126.

[18] J. Gao, H. Liu, Y. Li, C. Liu, Z. Yang, Q. Li, Z. Guan, and Z. Chen,
“Towards automated testing of blockchain-based decentralized
applications,” in IEEE/ACM 27th ICPC, 2019, pp. 294–299.

[19] X. Yinxing, M. Mingliang, L. Yun, S. Yulei, Y. Jiaming, and P. Tiany-
ong, “Cross-contract static analysis for detecting practical reen-
trancy vulnerabilities in smart contracts,” in 2020 35rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020.

[20] G. A. Oliva, A. E. Hassan, and Z. M. J. Jiang, “An exploratory study
of smart contracts in the ethereum blockchain platform,” Empirical
Software Engineering, pp. 1–41, 2020.
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